Skip to main content
Log in

Numerical simulation of the structure and evolution of a polar mesocyclone over the Kara Sea. Part 1. Model validation and estimation of instability mechanisms

  • The Winners of the Conference of Young Scientists
  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Numerical experiments based on the WRF model were conducted to analyze the structure and evolution of the polar mesoscale cyclone developed over the Kara Sea on September 29-30, 2008. It was found that baroclinic instability in the lower troposphere and convective instability (including that due to the wind-induced surface heat exchange) did not play a significant role. Significant contribution was made by the downward advection of potential vorticity from the upper troposphere and by the conditional instability of second kind. It is demonstrated that if water phase transitions are not taken into account, the mesocyclone intensity is reduced by 7-20% and the time of its development increases by 4 hours. The advection of potential vorticity was not the only process causing the intensification of the lower potential vorticity anomaly associated with cyclonic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Verezemskaya and V. M. Stepanenko, “Numerical Simulation of Intense Polar Mesoscale Cyclones with the WRF Model,” in International Conference and School of Young Scientists on Measurements, Modeling, and Information Systems for Environmental Studies (Tomskii TsNTI, Tomsk, 2014) [in Russian].

    Google Scholar 

  2. E. M. Volodin and V. N. Lykosov, “Parameterization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 1 Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

    Google Scholar 

  3. G. S. Golitsyn, “Pol ar Lows and Tropical Hurricanes: Their Energy and Sizes and a Quantitative Criterion for Their Generation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 44 (2008) [Izv., Atmos. Oceanic Phys., No. 5, 44 (2008)].

    Google Scholar 

  4. F. Ahmadi-Givi, G. C. Craig, and R. S. Plant, “The Dynamics of a Midlatitude Cyclone with Very Strong Latent Heat Retease,” Quart. J. Roy. Meteorol. Soc., No. 596, 130 (2004).

    Google Scholar 

  5. T. J. Bracegirdle and S. L. Gray, “The Dynamics of a Polar Low Assessed Using Potential Vorticity Inversion,” Quart. J. Roy. Meteorol. Soc., No. 641, 135 (2009).

    Google Scholar 

  6. S. Businger, “The Synoptic Climatology of Polar Low Outbreaks,” Tellus A, No. 5, 37 (1985).

    Google Scholar 

  7. J. G. Charney and A. Eliassen, “On the Growth of the Hurricane Depression,” J. Atmos. Sci., No. 1, 21 (1964).

    Google Scholar 

  8. S. A. Clough, C. S. A. Davitt, and A. J. Thorpe, “Attribution Concepts Applied to the Omega Equation,” Quart. J. Roy. Meteorol. Soc., No. 536, 122 (1996).

    Google Scholar 

  9. W. D. Collins, P. J. Racsh, B. A. Boville, et al., Description of the NCAR Community Atmosphere Model (CAM 3.0), Tech. Rep. NCAR/TN-464+ STR (2004).

    Google Scholar 

  10. A. C. L. Deveson, K. A. Browning, and T. D. Hewson, “A Classification of FASTEX Cyclones Using a Height-attributable Quasi-geostrophic Vertical Motion Diagnostic,” Quart. J. Roy. Meteorol. Soc., No. 579, 128 (2002).

    Google Scholar 

  11. K. A. Emanuel and R. Rotunno, “Potar Lows as Arctic Hurricanes,” Tellus A, No. 1, 41 (1989).

    Google Scholar 

  12. I. Fore, J. E. Kristjansson, E. W. Kolstad, et al., “A Hurricane-like Polar Low Fuelled by Sensible Heat Flux: High Resolution Numerical Simulations,” Quart. J. Roy. Meteorol. Soc., No. 666, 138 (2012).

    Google Scholar 

  13. J. R. Holton and G. J. Hakim, An Introduction to Dynamic Meteorology (Academic Press, 2013).

    Google Scholar 

  14. B. J. Hoskins, I. Draghici, and H. C. Davies, “A New Look at the Omega-equation,” Quart. J. Roy. Meteorol. Soc., No. 439, 104 (1978).

    Google Scholar 

  15. B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the Use and Significance of Isentropic Potential Vorticity,” Quart. J. Roy. Meteorol. Soc., No. 470, 111 (1985).

    Google Scholar 

  16. Z. I. Janjic, “Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model,” NCEP Office Note, 437 (2002).

  17. A. Kasahara, “Various Vertical Coordinate Systems Used for Numerical Weather Prediction,” Mon. Wea. Rev., No. 7, 102 (1974).

    Google Scholar 

  18. J. B. Klemp, W. C. Skamarock, and J. Dudhia, “Conservative Split-explicit Time Integration Methods for the Compressible Nonhydrostatic Equations,” Mon. Wea. Rev., 135 (2007).

  19. J. B. Klemp and R. B. Wilhelmson, “The Simulation of Three-dimensional Convective Storm Dynamics,” J. Atmos. Sci., No. 6, 35 (1978).

    Google Scholar 

  20. R. Laprise, “The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable,” Mon. Wea. Rev., No. 1, 120 (1992).

    Google Scholar 

  21. Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk Parameterization of the Snow Field in a Cloud Model,” J. Climate and Appl. Meteorol., 22 (1983).

  22. M. T. Montgomery and B. F. Farrell, “Polar Low Dynamics,” J. Atmos. Sci., No. 24, 49 (1992).

    Google Scholar 

  23. T. E. Nordeng and E. A. Rasmussen, “A Most Beautiful Polar Low. A Case Study of a Polar Low Development in the Bear Island Region,” Tellus A, No. 2, 44 (1992).

    Google Scholar 

  24. S. Peterssen and S. J. Smebye, “On the Development of Extratropical Cyclones,” Quart. J. Roy. Meteorol. Soc., No. 414, 97 (1971).

    Google Scholar 

  25. R. S. Plant, G. C. Craig, and S. L. Gray, “On a Threefold Classification of Extratropical Cyclogenesis,” Quart. J. Roy. Meteorol. Soc., No. 594, 129 (2003).

    Google Scholar 

  26. E. Rasmussen, “The Polar Low as an Extratropical CISK Disturbance,” Quart. J. Roy. Meteorol. Soc., No. 445, 105 (1979).

    Google Scholar 

  27. E. A. Rasmussen and J. Turner, Polar Lows: Mesoscale Weather Systems in the Polar Regions (Cambridge Univ. Press, 2003).

    Book  Google Scholar 

  28. W. C. Skamarock, J. B. Klemp, J. Dudhia, et al., A Description of the Advanced Research WRF Version 3, Technical Report (2008).

    Google Scholar 

  29. W. C. Skamarock and M. L. Weisman, “The Impact of Positive-definite Moisture Transport on NWP Precipita-tion Forecasts,” Mon. Wea. Rev., No. 1, 137 (2009).

    Google Scholar 

  30. M. T. Stoelinga, “A Potential Vorticity-based Study of the Role of Diabatic Heating and Friction in a Numerically Simulated Baroclinic Cyclone,” Mon. Wea. Rev., No. 5, 124 (1996).

    Google Scholar 

  31. V. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, et al., “Practice of “Lomonosov” Supercomputer,” Open Systems J., 7 (2012).

  32. Z.-L. Yang, G.-Y. Nio, K. E. Mitchell, et al., “The Community Noah Land Surface Model with Multiparameteri-zation Options (Noah-MP): 2. Evaluation over Global River Basins,” J. Geophys. Res., 116 (2011).

  33. E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, “New Approach for Severe Marine Weather Study Using Satellite Passive Microwave Sensing,” Geophys. Res. Lett., No. 13, 40 (2013).

    Google Scholar 

  34. S. Zilitinkevich, “Non-local Turbulent Transport Pollution Dispersion Aspects of Coherent Structure of Convec-tive Flows,” in Air Pollution III, Air Pollution Theory and Simulation, Ed. by H. Power, N. Moussiopoulos, and C. A. Brebbia (Computational Mechanics Publ., Southampton, Boston 1, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Verezemskaya.

Additional information

Original Russian Text © P.S. Verezemskaya, V.M. Stepanenko, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 6, pp. 69-81.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verezemskaya, P.S., Stepanenko, V.M. Numerical simulation of the structure and evolution of a polar mesocyclone over the Kara Sea. Part 1. Model validation and estimation of instability mechanisms. Russ. Meteorol. Hydrol. 41, 425–434 (2016). https://doi.org/10.3103/S1068373916060078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373916060078

Keywords

Navigation