Skip to main content
Log in

Validation of the results of the satellite monitoring of land surface temperature

  • Instruments, Observations, and Processing
  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Considered are the methods for analyzing the reliability (validation) of the estimates of land surface temperature T s retrieved from the data of polar orbiting and geostationary meteorological satellites. Given is a brief description of the satellite payload (scanning radiometers) and algorithms of remote determination of T s from the satellite data. For validating the satellite estimates of T s it is proposed to use the cross-validation procedure, i.e., the comparison with independent satellite estimates of T s for which the error level is known. Presented are the results of cross-validation of two independent satellite estimates of retrieved T s from the data of SEVIRI/Meteosat-10, MODIS/Terra, and Aqua instruments. Such procedure can be applied to validate the estimates of T s which are planned to be retrieved from the data of Meteor-M and Elektro-L Russian meteorological satellites. Demonstrated is the limited suitability of standard in situ observations of soil temperature at the network of weather stations for validating the satellite estimates of T s .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Asmus, V. N. Dyadyuchenko, V. A. Zagrebaev, et al., “Space Hydrometeorological Observational System Development Based on Electro-L Geostationary Satellite Series,” Vestnik NPO im. S. A. Lavochkina, No. 1 (2012) [Space J. “Lavochkin Association,” No. 1 (2012)].

    Google Scholar 

  2. S. S. Bykhovets, V. A. Sorokovikov, V. G. Martuganov, et al., “History of Soil Temperature Measurements at the Network of Meteorological Stations in Russia,” Kriosfera Zemli, No. 1, 11 (2007) [Earth Cryosphere, No. 1, 11 (2007)].

  3. V. N. Dyadyuchenko, V. A. Selin, A. E. Shilov, et al., “Development of Hydrometeorological and Oceanographic Space System Based on Meteor-M Polar Orbiting Satellites,” Issledovanie Zemli iz Kosmosa, No. 1 (2010) [in Russian].

    Google Scholar 

  4. R. L. Kagan, Averaging of Meteorological Fields (Gidrometeoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  5. E. L. Muzylev, A. B. Uspenskii, Z. P. Startseva, et al., “Utilization of Satellite Data on Land Surface and Snow Cover Characteristics for Modeling Water and Heat Balance Components in Vast Areas of Agricultural Purpose,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 9 (2012) [Current Problems in Remote Sensing of the Earth from Space, No. 1, 9 (2012)].

    Google Scholar 

  6. V. I. Solov’ev and S. A. Uspenskii, “Land Surface Temperature Monitoring Using the Data of New-Generation Geostationary Meteorological Satellites,” Issledovanie Zemli iz Kosmosa, No. 3 (2009) [in Russian].

    Google Scholar 

  7. V. I. Solov’ev, A. B. Uspenskii, and S. A. Uspenskii, “Derivation of Land Surface Temperature Using Measurements of Outgoing IR Radiation from Geostationary Meteorological Satellites,” Meteorol. Gidrol., No. 3 (2010) [Russ. Meteorol. Hydrol., No. 3, 35 (2010)].

    Google Scholar 

  8. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Basics of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  9. S. A. Uspenskii, Land Surface Temperature Monitoring Using the Measurement Data from Geostationary Satellites, Candidate’s Dissertation in Mathematics and Physics (Gidromettsentr Rossii, Moscow, 2011) [in Russian].

    Google Scholar 

  10. F. Becker and Z.-L. Li, “Toward a Local Split-window Method over Land Surface,” Int. J. Remote Sens., No. 3, 11 (1990).

    Google Scholar 

  11. F. Becker and Z.-L. Li, “Surface Temperature and Emissivity at Various Scales: Definition, Measurement and Related Problems,” Remote Sens. Rev., 12 (1995).

  12. A. Faysash and E. A. Smith, “Simultaneous Retrieval of Diurnal to Seasonal Surface Temperatures and Emissivities over SGP ARM-CART Site Using GOES Split Window,” J. Appl. Meteorol., 39 (2000).

  13. E. Kabsch, F. Olesen, and F. Prata, “Initial Results of the Land Surface Temperature Validation with the Evora, Portugal Ground-truth Station Measurements,” Int. J. Remote Sens., 29 (2008).

  14. H. Li, D. Sun, Y. Yu, et al., “Evaluation of the VIIRS and MODIS LST Products in an Arid Area of Northwest China,” Remote Sens. Environ., 142 (2014).

  15. R. Niclos, J. M. Calve, J. A. Valiente, et al., “Accuracy Assessment of Land Surface Temperature Retrievals from MSG2-SEVIRI Data,” Remote Sens. Environ., 115 (2011).

  16. NOAA KLM User’s Guide, http://www.ncdc.noaa.gov/oa/podguide/ncd/docs/klm/html/c1/sec1-2.htm (2005).

  17. Product User Manual. Land Surface Temperature (PUM_LST), SAF/LAND/IM/PUM_LST/2.1 (2008).

  18. V. Salomonson, W. Barnes, P. Maymon, et al., “MODIS: Advanced Facility Instrument for Studies System,” IEEE Trans. Geosci. Remote Sens., No. 2, 27 (1989).

    Google Scholar 

  19. R. W. Saunders, M. Matricardi, and P. Brunel, “An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations,” Quart. J. Roy. Meteorol. Soc., 125 (1999).

  20. J. Schmetz, P. Pili, S. Tjemkes, et al., “An Introduction to Meteosat Second Generation (MSG),” Bull. Amer. Meteorol. Soc., 83 (2002).

  21. W. C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based Emissivity for Land Surface Temperature Measurement from Space,” Int. J. Remote Sens., No. 14, 19 (1998).

    Google Scholar 

  22. W. Tobler and Zi-tan Chen, “A Quadtree for Global Information Storage,” Geogr. Anal., No. 4, 18 (1986).

    Google Scholar 

  23. Z. Wan and J. Dozier, “A Generalized Split-window Algorithm for Retrieving Land Surface Temperature from Space,” IEEE Trans. Geosci. Remote Sens., No. 4, 34 (1996).

    Google Scholar 

  24. Z. J. Wan, Y. Zhang, Q. Zhang, and Z.-L. Li, “Validation of the Land Surface Temperature Products Retrieved from Terra Moderate Resolution Imaging Spectroradiometer Data,” Remote Sens. Environ., 83 (2002).

  25. K. Watson, “Two-temperature Method for Measuring Emissivity,” Remote Sens. Environ., 42 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Uspenskii.

Additional information

Original Russian Text © A.B. Uspenskii, A.V. Kukharskii, S.A. Uspenskii, 2015, published in Meteorologiya i Gidrologiya, 2015, No. 2, pp. 81–95.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskii, A.B., Kukharskii, A.V. & Uspenskii, S.A. Validation of the results of the satellite monitoring of land surface temperature. Russ. Meteorol. Hydrol. 40, 131–140 (2015). https://doi.org/10.3103/S1068373915020107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373915020107

Keywords

Navigation