Skip to main content
Log in

What can be measured by the temperature profiler

  • Instruments, Observations, and Processing
  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The ability of the ground-based microwave temperature profiler to retrieve the lapse rates in the lower part of the atmospheric boundary layer is verified by analyzing the long-term observation series. It is demonstrated that if the stratification of the whole boundary layer is either unstable or sufficiently homogeneous, measured and retrieved with a mast lapse rates are quite similar. If the stratification is stable, the retrieval algorithms require correction. Demonstrated is the potential for the more accurate retrieving of the temperature gradient over the surface layer by means of the angular scanning. This enables using the data of temperature profilers for estimating the boundary layer stability and the Monin-Obukhov scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Vyazankin, E. N. Kadygrov, N. F. Mazurin, et al., “Comparison of Temperature Profiles and Inhomogeneity Structure Obtained from a Microwave Radiometer and a Tall Meteorological Mast,” Meteorol. Gidrol., No. 3 (2001) [Russ. Meteorol. Hydrol., No. 3 (2001)].

    Google Scholar 

  2. V. A. Gladkikh, A. E. Makienko, E. A. Miller, and S. L. Odintsov, “The Study of Parameters of the Atmospheric Boundary Layer under Urban Conditions by Means of Local and Remote Diagnostics, Part 2: The Air Temperature and Heat Flow,” Optika Atmosfery i Okeana, No. 11, 23 (2010) [Atmos. Oceanic Optics, No. 11, 23 (2010)].

  3. G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, et al., “The Moscow Heat Island in the Blocking Anticyclone during Summer 2010,” Dokl. Akad. Nauk, No. 5, 456 (2014) [Dokl. Phys., No. 5, 456 (2014)].

  4. E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “The Heat Island in the Boundary Atmospheric Layer over a Large City: New Results Based on Remote Sensing Data,” Dokl. Akad. Nauk, No. 4, 385 (2002) [Dokl. Phys., No. 4, 385 (2002)].

  5. I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of Lowest 600 m Atmospheric Layer Temperature on the Basis of the MTP-5 Profiler Data,” Optika Atmosfery i Okeana, No. 10, 25 (2012) [Atmos. Oceanic Optics, No. 10, 25 (2012)].

  6. A. S. Monin and A. M. Obukhov, “Main Regularities of Turbulent Mixing in Atmospheric Surface Layer,” Trudy GeoFIAN, 24 (1954) [in Russian].

  7. A. P. Naumov, N. N. Osharina, and A. V. Troitskii, “Ground-based Microwave Thermal Sounding of the Atmosphere,” Izv. vuzov. Radiofizika, No. 1, 42 (1999) [Radiophysics and Quantum Electronics, No. 1, 42 (1999)].

  8. A. V. Troitskii, “Remote Determination of Atmospheric Temperature from Spectral Radiometric Measurements in the 5-mm Line,” Izv. vuzov. Radiofizika, No. 8, 29 (1986) [Radiophysics and Quantum Electronics, No. 8, 29 (1986)].

  9. M. N. Khaikin, E. N. Kadygrov, and I. N. Kuznetsova, “Influence of High Aerosol Concentration on the Thermal Structure of the Atmospheric Boundary Layer,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 6, 42 (2006)].

  10. V. P. Yushkov, “The Wind Speed Shear in the Case of Stable Stratification and the Scales of the Similarity Theory,” Meteorol. Gidrol., No. 12 (2013) [Russ. Meteorol. Hydrol., No. 12, 38 (2013)].

    Google Scholar 

  11. S. Argentini, I. Pietroni, C. Gariazzo, et al., “Temperature Profiles by Ground-based Remote Sensing and in Situ Measurements,” in IOP Conference Series: Earth and Environmental Science, No. 1,1 (IOP Publishing, 2008).

    Google Scholar 

  12. S. Argentini, I. Pietroni, Mastrantonio, et al., “Characteristics of the Night and Day Time Atmospheric Boundary Layer at Dome C, Antarctica,” EAS Publ. Series-EDP Sciences, 25 (2007).

  13. B. B. Balsley, R. G. Frehlich, M. L. Jensen, et al., “Extreme Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and Potential Causes,” J. Atmos. Sci., No. 20, 60 (2003).

    Google Scholar 

  14. S. Crewell and U. Lohnert, “Accuracy of Boundary Layer Temperature Profiles,” IEEE Trans. Geosci. and Remote Sensing, No. 7, 45 (2007).

    Google Scholar 

  15. V. V. Folomeev, E. N. Kadygrov, E. A. Miller, et al., “Advanced Microwave System for Measurement of ABL Thermal Stratification in Polar Region,” in Proceedings of WMO Techn. Conferense on Meteorological Instruments and Methods of Observations (Helsinki, Finland, 2010).

    Google Scholar 

  16. J. R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  17. E. Kadygrov, E. Miller, V. Nekrasov, et al., “MTP-5PE—New Instrument for Temperature Profiling in Polar Region,” in Proceedings of the 9th International Symposium on Tropospheric Profiling, September 3–7, 2012, L’Aquila, Italy.

  18. E. N. Kadygrov and D. R. Pick, “The Potential Performance of an Angular-scanning Single-channel Microwave Radiometer and Some Comparisons with in Situ Observations,” Meteorol. Appl., 5 (1998).

  19. J. C. Kaimal and J. J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure and Measurement (Oxford University Press, 1994).

    Google Scholar 

  20. M. A. Kallistratova, R. D. Kouznetsov, V. F. Kramar, and D. D. Kuznetsov, “Profiles of Wind Speed Variances within Nocturnal Low-level Jets Observed with a Sodar,” J. Atmos. Oceanic Technol., No. 9, 30 (2013).

  21. U. Löhnert and S. Crewell, “Accuracy of Cloud Liquid Water Path from Ground-based Microwave Radiometry. Part I: Dependency on Cloud Model Statistics,” Radio Sci., 38 (2003).

  22. U. Löhnert, S. Crewell, O. Krasnov, et al., “Advances in Continuously Profiling the Thermodynamic State of the Boundary Layer: Integration of Measurements and Methods,” J. Atmos. Oceanic Technol., No. 8, 25 (2008).

  23. U. Löhnert and O. Maier, “Operational Profiling of Temperature Using Ground-based Microwave Radiometry at Payerne: Prospects and Challenges,” Atmos. Meas. Tech., 5 (2012).

  24. U. Löhnert, E. van Meijgaard, H. K. Baltink, et al., “Accuracy Assessment of an Integrated Profiling Technique for Operationally Deriving Profiles of Temperature, Humidity, and Cloud Liquid Water,” J. Geophys. Res. Atmos., 112 (2007).

  25. A. V. Troitsky, K. P. Gaykovich, E. N. Kadygrov, et al., “Thermal Sounding of the Atmosphere Boundary Layer in Oxygen Absorption Band Center at 60 GHz,” IEEE Trans. Geosci. and Remote Sensing, No. 1, 31 (1993).

  26. E. R. Westwater, S. Crewell, and C. Mätzler, “Surface-based Microwave and Millimeter Wave Radiometric Remote Sensing of the Troposphere: A Tutorial,” IEEE Geosci. and Remote Sensing Newsletter (2005).

    Google Scholar 

  27. E. R. Westwater, Y. Han, V. G. Irisov, et al., “Remote Sensing of Boundary Layer Temperature Profiles by a Scanning 5-mm Microwave Radiometer and RASS: Comparison Experiments,” J. Atmos. Oceanic Technol., 16 (1999).

  28. http://attex.net/RU/mtp5.php.

  29. http://www.metek.de/product-details/usonic-3-scientific.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Yushkov.

Additional information

Original Russian Text © V.P. Yushkov, 2014, published in Meteorologiya i Gidrologiya, 2014, No. 12, pp. 76–88.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkov, V.P. What can be measured by the temperature profiler. Russ. Meteorol. Hydrol. 39, 838–846 (2014). https://doi.org/10.3103/S1068373914120097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373914120097

Keywords

Navigation