Skip to main content
Log in

Active Electrode Material Influence on the Characteristics of Corona Discharge Reactor at Atmospheric Pressure

  • Published:
Russian Electrical Engineering Aims and scope Submit manuscript

Abstract

In this article, an experimental study of a corona discharge generated with a tip-plane geometry and negative polarity in air at atmospheric pressure, is presented. The effects of the active electrode material and its curvature radius on the characteristics of the corona discharge are studied. Two different materials, aluminum and copper, are used to produce active electrodes. The current–voltage characteristics show a greater intensity of the current for the aluminum electrodes as compared to the copper ones. On another side, the current is greater with the tip having the smallest curvature radius. The current–voltage characteristics have a shape well approximated by a parabolic equation. Trichel pulses are more regular for aluminum electrodes than for the copper ones. Eventually, the use of aluminum electrodes to have a stronger regular discharge would be better to make a cold plasma reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Akishev, Yu.S., Grushin, M.E., Karal’nik, V.B., Monich, A.E., and Trushkin, N.I., Shape of the current tube of a negative point-to-plane corona in air, Plasma Phys. Rep., 2003, vol. 29, pp. 717–726.  https://doi.org/10.1134/1.1601650

    Article  Google Scholar 

  2. Chang, J.-S., Lawless, P.A., and Yamamoto, T., Corona discharge processes, IEEE Trans. Plasma Sci., 1991, vol. 19, no. 6, pp. 1152–1166.  https://doi.org/10.1109/27.125038

    Article  Google Scholar 

  3. Aubrecht, L., Stanek, Z., and Koller, J., Systematic study of the characteristics of the point-to-plane corona on natural objects, Proc. Int. Congress on Plasma Physics & 25th EPS Conf. on Controlled Fusion and Plasma Physics, Prague, 1998.

  4. Leys, C., Neirynch, D., Morent, R., and Temmerman, E., DC-excited cold atmospheric pressure plasmas, Czech. J. Phys., 2006, pp. B896–B902.  https://doi.org/10.1007/s10582-006-0301-5

  5. Matra, K., Tanakaran, Y., Temponsub, T., Nimbua, S., Thab-in, P., and Pluksa, C., Electrical characteristics of atmospheric air corona plasma by multi-pin electrodes, Int. Rev. Electr. Eng., 2019, vol. 14, no. 3, pp. 226–236.

    Google Scholar 

  6. Akishev, Yu.S., Grushin, M.E., Karal’nik, V.B., Monich, A.E., and Trushkin, N.I., Shape of the current tube of a negative point-to-plane corona in air, Plasma Phys. Rep., 2003, vol. 29, pp. 717–726.  https://doi.org/10.1134/1.1601650

    Article  Google Scholar 

  7. Lama, W.L. and Gallo, C.F., Systematic study of the electrical characteristics of the “Trichel” current pulses from negative needle to plane coronas, J. Appl. Phys., 1974, vol. 45, p. 103.  https://doi.org/10.1063/1.1662943

    Article  Google Scholar 

  8. Liao, R., Wu, F., Yang, L., Wang, K., Zhou, Z., and Liu, K., Investigation on microcosmic characteristics of Trichel pulse in bar-plate DC negative corona discharge based on a novel simulation model, Int. Rev. Electr. Eng., 2013, vol. 8, no. 1, pp. 504–513.

    Google Scholar 

  9. Akishev, Yu.S., Kochetov, I.V., Loboiko, A.I., and Napartovich, A.P., Numerical simulations of Trichel pulses in a negative corona in air, Plasma Phys. Rep., 2002, vol. 28, pp. 1049–1059.  https://doi.org/10.1134/1.1528237

    Article  Google Scholar 

  10. Akishev, Yu.S., Grushin, M.E., Karal’nik, V.B., and Trushkin, N.I., Pulsed mode of a negative corona in nitrogen: I. Experiment, Plasma Phys. Rep., 2001, vol. 27, pp. 520–531.  https://doi.org/10.1134/1.1378130

    Article  Google Scholar 

  11. Dandaron, G.-N.B. and Baldanov, B.B., Experimental study of a negative corona in atmospheric-pressure argon, Plasma Phys. Rep., 2007, vol. 33, pp. 243–248.  https://doi.org/10.1134/S1063780X07030099

    Article  Google Scholar 

  12. Goldman, M., Megherbi, M., Berger, G., and Belabed, O., Influence of humidity on phenomena at the low-field electrode in SF6 coronas, Proc. 6th Int. Symp. on High Voltage Engineering, New Orleans, 1989.

  13. Piemontesi, W. and Zaengl, W., Analysis of decomposition products of sulfur hexafluoride by spark discharges at different spark energies, 9th Int. Symp. on High Voltage Engineering, Graz, Austria, 1995.

  14. Yahiaoui, B., Megherbi, M., Smaili, A., Antoniu, A., Tabti, B., and Descalescu, L., Distribution of electric potential at the surface of corona-charged polypropylene nonwoven fabrics after neutralization, IEEE Trans. Ind. Appl., 2013, vol. 49, no. 4, pp. 1758–1766.  https://doi.org/10.1109/TIA.2013.2256412

    Article  Google Scholar 

  15. Yahiaoui, B., Tabti, B., Megherbi, M., Antoniu, A., Plopeanu, M.-C., and Dascalescu, L., AC corona neutralization of positively and negatively charged polypropylene non-woven fabrics, IEEE Trans. Dielectr. Electr. Insul., 2013, vol. 20, no. 5, pp. 1516–1522.  https://doi.org/10.1109/TDEI.2013.6633678

    Article  Google Scholar 

  16. Piemontesi, L. and Niemeyer, L., Generation and decay of S2O2F10 in SF6 insulation, 9th Int. Symp. on High Voltage Engineering, Graz, Austria, 1995.

  17. Goldman, A., Goldman, M., Sigmond, R.S., Khabthani, S., and Odic, E., Field induced current and breakdown through insulating polymer foils: Conduction by electron avalanche?, Proc. Nordic Insulation Symp., Bergen, Norway, 1996, pp. 91–98.

  18. Ma, B., Gubanski, S.M., and Hillborg, H., AC and DC zone-induced ageing of HTV silicone rubber, IEEE Trans. Dielectr. Electr. Insul., 2011, vol. 18, no. 6, pp. 1984–1994.  https://doi.org/10.1109/TDEI.2011.6118636

    Article  Google Scholar 

  19. Giacometti, J.A., Fedosov, S., and Costa, M.M., Corona charging of polymers: Recent advances on constant current charging, Braz. J. Phys., 1999, vol. 29, no. 2, pp. 269–279. doi https://doi.org/10.1590/S0103-97331999000200009

    Article  Google Scholar 

  20. Labay, C., Canal, C., Rodríguez, C., Caballero, G., and Canal, J.M., Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers, Appl. Surf. Sci., 2013, vol. 283, pp. 269–275.  https://doi.org/10.1016/j.apsusc.2013.06.100

    Article  Google Scholar 

  21. Ziari, Z. Nouicer, I., Sahli, S., Rebiai, S., Bellel, A., Segui, Y., and Raynaud, P., Chemical and electrical properties of HMDSO plasma coated polyimide, Vacuum, 2013, vol. 93, pp. 31–36.  https://doi.org/10.1016/j.vacuum.2012.12.009

    Article  Google Scholar 

  22. Yanallah, K., Pontiga, F., Meslem, Y., and Castellanos, A., An analytical approach to wire-to-cylinder corona discharge, J. Electrost., 2012, vol. 70, no. 4, pp. 374–383.  https://doi.org/10.1016/j.elstat.2012.05.002

    Article  Google Scholar 

  23. Mennad, B., Harrache, Z., Yanallah, K., Amir Aid, D., and Belasri, A., Effect of the anode material on ozone generation in corona discharge, Vacuum, 2014, vol. 104, pp. 29–32.  https://doi.org/10.1016/j.vacuum.2013.12.005

    Article  Google Scholar 

  24. Mekious, M., Megherbi, M., and Bitam-Megherbi, F., Material electrode influence of point-to-plane corona discharges in the atmospheric air, Proc. Gas Discharges and Their Applications, Toulouse, 2004, pp. 347–350.

    Google Scholar 

  25. Mekious, M., Bitam-Megherbi, F., and Megherbi, M., Effect of the electrodes material on the corona discharge at atmospheric pressure, Int. Rev. Phys., 2014, vol. 8, no. 4.

  26. Béquin, P., Joly, V., and Herzog, P., Modeling of a corona discharge microphone, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 17, p. 175204.  https://doi.org/10.1088/0022-3727/46/17/175204

    Article  Google Scholar 

  27. Meng, X., Zhang, H., and Zhu, J.J., A general empirical formula of current-voltage characteristics for point-to-plane geometry corona discharges, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 6, p. 065209.  https://doi.org/10.1088/0022-3727/41/6/065209

    Article  Google Scholar 

  28. Petrov, A.A., Amirov, R.H., and Samoylov, I.S., On the nature of copper cathode erosion in negative corona discharge, IEEE Trans. Plasma Sci., 2009, vol. 37, no. 7, pp. 1146–1149.  https://doi.org/10.1109/TPS.2009.2018561

    Article  Google Scholar 

  29. Mok, S.C., Aluminium economy for sustainable development: Aluminium as core material for energy storage and energy saving products: low cost, high performance, and easy processing in developing countries, IEEE Global Humanitarian Technology Conf., Seattle, 2011, IEEE, 2011, pp. 21–24.  https://doi.org/10.1109/GHTC.2011.11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hand Mekious.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M’hand Mekious, Megherbi, M., Bitam-Megherbi, F. et al. Active Electrode Material Influence on the Characteristics of Corona Discharge Reactor at Atmospheric Pressure. Russ. Electr. Engin. 93, 277–283 (2022). https://doi.org/10.3103/S1068371222040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068371222040095

Keywords:

Navigation