Skip to main content
Log in

Role of Spirulina platensis Biomass As a Cryoprotectant of Lactobacillus acidophilus CNCTC 7423 Strain During Freeze-Drying Process

  • CROP PRODUCTION, PLANT PROTECTION, AND BIOTECHNOLOGY
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

In this work, the protective capacity of Spirulina platensis biomass in the preservation of Lactobacillus acidophilus CNCTC 7423 was evaluated. Lactobacillus acidophilus CNCTC 7423 was freeze-dried in the presence of Spirulina platensis biomass. The freeze-dried samples were stored at 5 and 25°C for different periods of time. After desiccation, freeze-drying or storage, samples were rehydrated and bacterial plate counts were determined. According to the results obtained, Spirulina platensis biomass assays demonstrated to be highly efficient in the preservation of Lactobacillus acidophilus CNCTC 7423. The higher content of Spirulina platensis biomass in the commercial products was correlated with their higher protective capacity. Spirulina platensis biomass was widely known by their prebiotic properties. However, their role as protective molecules have not been reported nor properly explored up to now. In this work the protective capacity of Spirulina platensis biomass in the preservation of Lactobacillus acidophilus, a strain particularly sensitive to any preservation process, was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barroso, E., Montilla, A., Corzo, N., Peláez, C., Martínez-Cuesta, M.C., Requena, T., Effect of lactulose-derived oligosaccharides on intestinal microbiota during the shift between media with different energy contents, Food Res. Int., 2016, vol. 89, no. 1, pp. 302–308.

    Article  CAS  Google Scholar 

  2. Bauer, S., Schneider, S, Behr, J., Kulozik, U., and Foerst, P., Combined influence of fermentation and drying conditions on survival and metabolic activity of starter and probiotic cultures after low-temperature vacuum drying, J. Biotechnol., 2012, vol. 159, no. 4, pp. 351–357.

    Article  CAS  Google Scholar 

  3. Beganović, J., Frece, J., Kos, B., Pavunc, A.L., Habjanič, K., and Suskovic, J., Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92, Antonie van Leeuwenhoek, 2011, vol. 100, no. 1, pp. 43–53.

    Article  Google Scholar 

  4. Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., and Gibbs, P., Relevant factors for the preparation of freeze-dried lactic acid bacteria, Int. Dairy J., 2004, vol. 14, no. 10, pp. 835–847.

    Article  CAS  Google Scholar 

  5. De Angelis, M. and Gobbetti, M., 2004. Environmental stress responses in Lactobacillus: A review, Proteomics, vol. 4, no. 1, pp. 106–122.

    Article  CAS  Google Scholar 

  6. Tymczyszyn, E., Sosa, N., Gerbino, O., Zavaglia, A., and Schebor, C., Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix, Int. J. Food Microbiol., 2012, vol. 155, no. 3, pp. 217–221.

    Article  CAS  Google Scholar 

  7. Fonseca, F., Béal, C., Mihoub, F., Marin, M., and Corrieu, G., Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects, Int. Dairy J., 2003, vol. 13, no. 11, pp. 917–926.

    Article  CAS  Google Scholar 

  8. Ghosh, T, Beniwal, A, Semwal, A., and Navani, N., Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products, Front. Microbiol., 2019, vol. 10, art. ID 502. https://doi.org/10.3389/fmicb.2019.00502

    Article  PubMed  PubMed Central  Google Scholar 

  9. Górska, A., Przystupski, D., Niemczura, M., and Kulbacka, J., Probiotic bacteria: a promising tool in cancer prevention and therapy, Curr. Microbiol., 2019, vol. 76, pp. 939–949.

    Article  Google Scholar 

  10. Grattepanche, F. and Lacroix, C., Production of viable probiotic cells, in Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, McNeil, B., Archer, D., Giavasis, I., and Harvey, L., Eds., Cambridge: Woodhead Publishing, 2013.

    Google Scholar 

  11. Gourbeyre, P., Denery, S., and Bodinier, M., Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions, J. Leukocyte Biol., 2011, vol. 89, no. 5, pp. 685–695.

    Article  CAS  Google Scholar 

  12. Haiping, L., Pei, Z., Shuhai, Z., Dengyun, Z., Herong, F., Yi, S., and Xinqian, W., Protective effect of polysaccharides from Pholiota nameko on Lactobacillus casei ATCC 334 subjected to freeze-drying, LWT, 2019, vol. 115, art. ID 108463. https://doi.org/10.1016/j.lwt.2019.108463

    Article  CAS  Google Scholar 

  13. Heidebach, T., Forst, P., and Kulozik, U., Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells, J. Food Eng., 2010, vol. 98, no. 3, pp. 309–316.

    Article  CAS  Google Scholar 

  14. Hubálek, Z., Protectants used in the cryopreservation of microorganisms, Cryobiology, 2003, vol. 46, no. 3, pp. 205–229.

    Article  Google Scholar 

  15. Macfarlane, G.T., Steed, H., and Macfarlane, S., Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics, J. Appl. Micro-biol., 2008, vol. 104, no. 2, pp. 305–344.

    CAS  Google Scholar 

  16. Jain, M., Gupta, K., and Jain, P., Significance of probiotics and prebiotics in health and nutrition, Malaya J. Biosci., 2014, vol. 1, no. 3, pp. 181–195.

    CAS  Google Scholar 

  17. Juarez, T.M., Ocana, V., and Nader-Macias, M., Viability of vaginal probiotic lactobacilli during refrigerated and frozen storage, Anaerobe, 2004, vol. 10, no. 1, pp. 1–5.

    Article  Google Scholar 

  18. Johnston, D. and Castelli, F., The influence of sugars on the properties of freeze-dried lysozyme and haemoglobin, Thermochimica Acta, 1989, vol. 144, no. 2, pp. 195–208.

    Article  CAS  Google Scholar 

  19. Lapsiri, W., Bhandari, B., and Wanchaitanawong, P., Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage, Drying Technol., 2012, vol. 30, no.13, pp. 1407–1412.

    Article  CAS  Google Scholar 

  20. Mays, Z. and Nair, N., Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics, Curr. Opin. Biotechnol., 2018, vol. 53, pp. 224–231.

    Article  CAS  Google Scholar 

  21. Mokoena, M., Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review, Molecules, 2017, vol. 22, no. 8, art. ID 1255. https://doi.org/10.3390/molecules22081255

    Article  CAS  PubMed Central  Google Scholar 

  22. Novoselova, D. and Stoyanova, L., Optimization of the storage method of Lactococcus lactis ssp. lactis strains to stabilize their probiotic potential, 2021, J. Microbiol. Exp., vol. 9, no. 1, pp. 4–7.

    Article  Google Scholar 

  23. Navarta, L.G., Calvo, J., Calvente, V., Benuzzi, D., and Sanz, M.I., Freezing and free-drying of the bacterium Rahnella aquatilis BNM 0523: study of protecting agents, rehydration media and freezing temperatures, Lett. Appl. Microbiol., 2011, vol. 53, pp. 565–571.

    Article  CAS  Google Scholar 

  24. Sullivan, L., Murphy, B., Mcloughlin, P., Duggan, P., Lawlor, P.G., et al., Prebiotics from marine macro-algae for human and animal health applications, Mar. Drugs, 2010, vol. 8, no. 7, pp. 2038–2064.

    Article  Google Scholar 

  25. Putta, S., Yarla, N.S., Lakkappa, D.B., Imandi, S.B., Malla, R.R., Chaitanya, A.K., Chari, B.P.V., Saka, S., Vechalapu, R.R., Kamal, M.A., et al., Chapter 2–probiotics: supplements, food, pharmaceutical industry, in Therapeutic, Probiotic, and Unconventional Foods, Grumezescu, A.M. and Holban, A.M., Eds., Cambridge: Academic Press, 2018, pp. 15–25.

  26. Parada, J., Zulpa De Caire, G., Zaccaro, De Mulé, M., and Storni De Cano, M., Lactic acid bacteria growth promoters from Spirulina platensis, Int. J. Food Microbiol., 1998, vol. 45, no. 3, pp. 225–228.

    Article  CAS  Google Scholar 

  27. Rastoll, M.J., Ouahid, Y., Martín-Gordillo, F., Ramos, V., Vasconcelos, V., and Campo, F.F., The development of a cryopreservation method suitable for a large cyanobacteria collection, J. Appl. Phycol., 2013, vol. 25, pp. 1483–1493.

    Article  CAS  Google Scholar 

  28. Rault, A., Bouix, M., and Béal, C., Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation, Int. Dairy J., 2010, vol. 20, no. 11, pp. 792–799.

    Article  CAS  Google Scholar 

  29. Silva, H.R., Prete, C.E.C., Zambrano, F., Mello, V.H., Tischer, C.A., and Andrade, D.S., Combining glucose and sodium acetate improves the growth of Neochloris oleoabundans under mixotrophic conditions, AMB Express, 2016, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

  30. Santos, M.I., Araujo-Andrade, C., Esparza-Ibarra, E., Tymczyszym, E., and Gómez-Zavaglia, A., Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulgaricus, Biotechnol. Prog., 2014, vol. 30, pp. 1231–1238.

    Article  CAS  Google Scholar 

  31. Tabasco, R., de Palencia, P.F., Fontecha, J., Peláez, C., and Requena, T., Competition mechanisms of lactic acid bacteria and bifidobacteria: Fermentative metabolism and colonization, LWT–Food Sci. Technol., 2014, vol. 55, no. 2, pp. 680–684.

    Article  CAS  Google Scholar 

  32. Tymczyszyn, E.E., Gerbino, E., Illanes, A., and Gómez-Zavaglia, A., Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus, Cryobiology, 2011, vol. 62, no. 2, pp. 123–129.

    Article  Google Scholar 

  33. Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., and Augustin, M.A., Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose, J. Food Eng., 2012, vol. 109, no. 3, pp. 597–602.

    Article  CAS  Google Scholar 

  34. Van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S.D., and Maguin, E., Stress responses in lactic acid bacteria, Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol., 2002, vol. 82, pp. 187–216.

    CAS  Google Scholar 

  35. Wang, Y., Corrieu, G., and Beal, C., Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758, J. Dairy Sci., 2005, vol. 88, no. 1, pp. 21–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors completed the data acquisition, maintained the dataset, completed the analysis and interpretation of the data, providing revision and intellectual content and approved the final version of the manuscript.

Corresponding author

Correspondence to Ivo Ganchev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganchev, I., Mihaylova, S. Role of Spirulina platensis Biomass As a Cryoprotectant of Lactobacillus acidophilus CNCTC 7423 Strain During Freeze-Drying Process. Russ. Agricult. Sci. 48, 203–211 (2022). https://doi.org/10.3103/S1068367422030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367422030077

Keywords:

Navigation