Skip to main content
Log in

Biological Characteristics and Phylogeny of Sphingomonad Strains Associated with Citrus Trees in Northern Iran

  • AGRICULTURAL SOIL SCIENCE AND AGROECOLOGY
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Sphingomonads are becoming increasingly widespread in diverse aquatic and terrestrial environments including the phylosphere and rhizosphere of plants, among which a few have emerged as plant pathogens. The taxonomic status and some biological characteristics of the sphingomonads existing as epiphyte on citrus trees were investigated in the present study. Among the 16 phenogroups, tentatively identified as sphingomonad, nine groups were identified as Sphingomonas, Sphingobium and Novosphingobium strains judged from their 16S rDNA sequences. Four out of the nine groups of strains were identified as Sphingomonas melonis, among which a representative strain was used along with the representatives of the other five groups in MLSA phylogeny employing the housekeeping genes atpD, dnaK, gap, recA, and rpoB. Based on the results of the phylogenies inferred from sequences of concatenated data set, strains of four groups belonged to the genus Sphingomonas, with the ones identified as S. melonis confirmed as such, and the strains of the remaining two groups each were member of Sphingobium and Novosphingobium. The epiphytic existence of S. melonis strains which were able to incite brown spot melon on citrus trees warrants further investigation. All of the strains produced a hypersensitive reaction in geranium and some possessed ice nucleation activity. Further studies are needed to resolve taxonomic status of the unidentified species and to unravel additional biological features of the sphingomonad strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Citrus Fruit Fresh and Processed—Statistical Bulletin, Rome: UN Food Agric. Org., 2016.

  2. Ferguson, L. and Grafton-Cardwell, E., Citrus Production Manual, Oakland, CA: Univ. Calif., Agric. Nat. Resour., 2014.

    Google Scholar 

  3. Ashkan, S.M., A Textbook of Fruit Crops Diseases in Iran, Tehran: AIJ, 2006.

    Google Scholar 

  4. Hashem, P., Tajvar, Y., Shekh-Ashkoore, A., Ebadi, H., Fatahi-Moghadam, J., and Faghih-Nasiri, M., Evaluation of Cold and Frost Damage in Citrus and Kiwifruit of Mazandaran Province Citrus, Ramsar: Citrus Subtrop. Fruits Res. Cent., 2017.

  5. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T., and Yamamoto, H., Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas, Microbiol. Immunol., 1990, vol. 34, no. 2, pp. 99–119.

    Article  CAS  Google Scholar 

  6. Takeuchi, M., Hamana, K., and Hiraishi, A., Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, no. 4, pp. 1405–1417.

    Article  CAS  Google Scholar 

  7. Jogler, M., Chen, H., Simon, J., Rohde, M., Busse, H.J., Klenk, H.P., Tindall, B.J., and Overmann, J., Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, no. 4, pp. 1342–1349.

    Article  Google Scholar 

  8. Buonaurio, R., Stravato, V.M., Kosako, Y., Fujiwara, N., Naka, T., Kobayashi, K., Cappelli, C., and Yabuuchi, E., Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, no. 6, pp. 2081–2087.

    CAS  PubMed  Google Scholar 

  9. Kini, K., Agnimonhan, R., Dossa, R., Soglonou, B., Gbogbo, V., Ouedrago, I., Kpemoua, K., Traore, M., and Silue, D., First report of Sphingomonas sp. causing bacterial leaf blight of rice in Benin, Burkina Faso, the Gambia, Ivory Coast, Mali, Nigeria, Tanzania and Togo, New Dis. Rep., 2017, vol. 35, p. 32.

    Article  Google Scholar 

  10. Kim, H., Nishiyama, M., Kunito, T., Senoo, K., Kawahara, K., Murakami, K and Oyaizu, H., High population of Sphingomonas species on plant surface, J. Appl. Microbiol., 1998, vol. 85, no. 4, pp. 731–736.

    Article  Google Scholar 

  11. Schaad, N.W., Jones, J.B., and Chun, W., Laboratory Guide for Identification of Plant Pathogenic Bacteria, Schaad, N.W., Jones, J.B., and Chun, W., Eds., St. Paul: APS Press, 2001.

    Google Scholar 

  12. Silva, C., Cabral, J.M.S., and Van Keulen, F., Isolation of a beta-carotene over-producing soil bacterium, Sphingomonas sp., Biotechnol. Lett., 2004, vol. 26, no. 3, pp. 257–262.

    Article  CAS  Google Scholar 

  13. Rahimian, H., Bacterial leaf spot of zinnia in Mazandaran, J. Sci. Agric., 1995.

  14. Lindow, S.E., Arney, D.C., and Uppr, C.D., Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn, Phytopathology, 1978, vol. 68, no. 3, pp. 523–527.

    Article  Google Scholar 

  15. Verma, H., Rani, P., Kumar Singh, A., Kumar, R., Dwivedi, V., et al., Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, no. 10, pp. 3720–3726.

    Article  CAS  Google Scholar 

  16. Wilson, K., Preparation of genomic DNA from bacteria, Curr. Protoc. Mol. Biol., 2001, vol. 56, no. 1, pp. 241–245.

    Article  Google Scholar 

  17. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, no. 2, pp. 697–703.

    Article  CAS  Google Scholar 

  18. Chen, H., Population structure and species description of aquatic Sphingomonadaceae, PhD Thesis, Munich: Ludwig-Maximilians-University, 2012.

  19. Krishnan, R., Menon, R., Likhitha, R., Busse, H.J., Tanaka, N., Krishnamurthi, S., and Rameshkumar, N., Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice, Res. Microbiol., 2017, vol. 168, no. 2, pp. 113–121.

    Article  CAS  Google Scholar 

  20. Hall, B.G., Phylogenetic Trees Made Easy: a How-to Manual, Sunderland: Sinauer Associates, 2011.

    Google Scholar 

  21. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729.

    Article  CAS  Google Scholar 

  22. Nei, M. and Kumar, S., Phylogenetic analysis in molecular evolutionary genetics, Annu. Rev. Genet., 1996, vol. 30, no. 1, pp. 371–403.

    Article  CAS  Google Scholar 

  23. Wilantho, A., Deekaew, P., Srisuttiyakorn, C., Tongsima, S., and Somboonna, N., Diversity of bacterial communities on the facial skin of different age-group Thai males, Peer J., 2017, vol. 5, p. e4084.

    Article  Google Scholar 

  24. Kontur, W S., Bingman, C.A., Olmsted, C.N., Wassarman, D.R., Ulbrich, A., Gall, D.L., Smith, R.W., Yusko, L.M., Fox, B.G., Noguera, D.R., Coon, J.J., and Donohue, T.J., Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β–aryl ether bond of lignin, J. Biol. Chem., 2018, vol. 293, no. 14, pp. 4955–4968.

    Article  CAS  Google Scholar 

  25. Liu, F., Zhan, R.L., and He, Z.Q., First report of bacterial dry rot of Mango caused by Sphingomonas sanguinis in China, Plant Dis., 2018, vol. 102, no. 12, p. 2632.

    Article  Google Scholar 

  26. Nikravesh, Z., Arab, F., Rezaeian, V., and Rahimian, H., Isolation of Sphingomonas sp. from peach and willow trees in Kashan, Proc. 17th Iranian Plant Protection Congr., Tehran, 2006, p. 479.

  27. Huang, Y., Feng, H., Lu, H., and Zeng, Y., Novel 16S rDNA primers revealed the diversity and habitats-related community structure of sphingomonads in 10 different niches, Antonie Leeuwenhoek, 2017, vol. 110, no. 7, pp. 877–889.

    Article  CAS  Google Scholar 

  28. Pandey, R., Usui, K., Livingstone, R.A., Fischer, S.A., Faendtner, J.P., Backus, E.H.G., Nagata, Y., Fröhlich-Nowoisky, J., Schmüser, L., Mauri, S., Scheel, J.F., Knopf, D.A., Pöschl, U., et al., Ice-nucleating bacteria control the order and dynamics of interfacial water, Sci. Adv., 2016, vol. 2, no. 4, p. e1501630.

    Article  Google Scholar 

  29. Nejad, P., Ramstedt, M., and Granhall, U., Pathogenic ice-nucleating active bacteria in willow for short rotation forestry, For. Pathol., 2004, vol. 34, no. 6, pp. 369–381.

    Article  Google Scholar 

  30. Pallen, M.J. and Wren, B.W., Bacterial pathogenomics, Nature, 2007, vol. 449, no. 7, pp. 835–842.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Mrs. Zahra Nikravesh for her excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heshmat Rahimian.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyed Zahra Valedsaravi, Rahimian, H., Babaeizad, V. et al. Biological Characteristics and Phylogeny of Sphingomonad Strains Associated with Citrus Trees in Northern Iran. Russ. Agricult. Sci. 47, 606–613 (2021). https://doi.org/10.3103/S1068367421060161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367421060161

Keywords:

Navigation