Skip to main content
Log in

Genetic diversity analysis in Plantago ovata and some of its wild allies using RAPD markers

  • Plant Growing
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Plantago ovata, commonly called as the 'desert Indian wheat' is a cultivated and economically important plant of the genus Plantago, a large genus containing ~200 species. It yields Psyllium (Isabgol) which has several health benefits and applications in pharmaceutical, food and cosmetic industries. In view of the genetic uniformity, detection of variability has remained a challenge in this species as the plant lacks inherent variability and has a narrow genetic base. During the present study, Random amplified polymorphic DNA (RAPD) was used to determine genetic relationship and detect whatever little hidden variation exists in this species and some of its wild allies. Limited genetic variability was observed in P. ovata whereas; extensive genetic variability was seen in its wild allies. The genetic distances among different accessions of P. ovata and different species of Plantago, were used to generate a dendrogram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahn, K., A phylogenetic study of the plantaginaceae, Bot. J. Linn. Soc., 1996, vol. 12, pp. 145–198.

    Google Scholar 

  2. Dhar, M.K., Kaul, S., Sareen, S., and Koul, A.K., Plantago ovata: Cultivation, genetic diversity, chemistry and utilization, Plant Genet. Resour., Cult. Util., 2005, vol. 3, pp. 252–263.

    Article  Google Scholar 

  3. Dhar, M.K., Kaul, S., Sharma, P., and Gupta, M., Plantago ovata: Cultivation, genomics, chemistry and therapeutic applications, in Genetic Resources, Chromosome Engineering and Crop Improvement, Singh, R.J., Ed., New York: CRC Press, 2011, pp. 764–794.

    Google Scholar 

  4. Dhar, M.K., Fuchs, J., and Houben, A., Distribution of euand heterochromatin in Plantago ovate, Cytogenet. Genome Res., 2009, vol. 125, pp. 235–240.

    Article  CAS  PubMed  Google Scholar 

  5. Kotwal, S., Dhar, M.K., Kour, B., Raj, K., and Kaul, S., Molecular markers unravel intraspecific and interspecific genetic variability in Plantago ovata and some of its wild allies, J. Genet., 2013, vol. 92, pp. 293–298.

    Article  PubMed  Google Scholar 

  6. Samantaray, S., Dhagat, U.M., and Maiti, S., Evaluation of genetic relationships in Plantago species using Random Amplified Polymorphic DNA (RAPD) markers, Plant Biotechnol., 2010, vol. 27, pp. 297–303.

    Article  CAS  Google Scholar 

  7. Ragot, M. and Hoisington, D.A., Molecular markers for plant breeding: Comparisons of RFLP and RAPD genotyping costs, Theor. Appl. Genet., 1993, vol. 86, pp. 975–984.

    Article  CAS  PubMed  Google Scholar 

  8. Heun, M., Murphy, J.P., and Phillips, T.D., A comparison RAPD and isozyme analyses for determining the genetic relationship among Avena sterilis L. accessions, Theor. Appl. Genet., 1994, vol. 87, pp. 689–696.

    Article  CAS  PubMed  Google Scholar 

  9. Hilu, K.W., Evidence from RAPD markers in the evolution of Echinochloa millets (Poaceae), Plant. Syst. Evol., 1994, vol. 189, pp. 247–257.

    Article  CAS  Google Scholar 

  10. Yu, L.X. and Nguyen, H.T., Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L.), Theor. Appl. Genet., 1994, vol. 87, pp. 668–672.

    Article  CAS  PubMed  Google Scholar 

  11. Halward, T., Stalker, T., LaRue, E., and Kochert, G., Use of single-primer DNA amplification in genetic studies of peanut (Arachis hypogeae L.), Plant Mol. Biol., 1992, vol. 18, pp. 315–325.

    Article  CAS  PubMed  Google Scholar 

  12. Santos, dos J.B., Nienhuis, J., Skroch, P., Tivang, J., and Slocum, M.K., Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes, Theor. Appl. Genet., 1994, vol. 87, pp. 909–915.

    Article  PubMed  Google Scholar 

  13. Yang, X. and Quiros, C., Identification and classification of celery cultivars with RAPD markers, Theor. Appl. Genet., 1993, vol. 86, pp. 205–212.

    CAS  PubMed  Google Scholar 

  14. Orozco-Castillo, C., Chalmers, K.J., Waugh, R., and Powell, W., Detection of genetic diversity and selective gene introgression in coffee using RAPD markers, Theor. Appl. Genet., 1994, vol. 87, pp. 934–940.

    Article  CAS  PubMed  Google Scholar 

  15. Russell, J.R., Hosein, F., Johnson, E., Waugh, R., and Powell, W., Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis, Mol. Ecol., 1993, vol. 2, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  16. Williams, C.E. and St. Clair, D.A., Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum, Genome, 1993, vol. 36, pp. 619–630.

    Article  CAS  PubMed  Google Scholar 

  17. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf material, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  18. Jaccard, P., Novelles reverches sur la distribution florale, Bull. Soc. Vaud. Sci. Nat., 1908, vol. 44, pp. 223–270.

    Google Scholar 

  19. Rohlf, F.J., NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System, Version, p. 2.2, 2005, Exeter Software: Setauket, NY.

    Google Scholar 

  20. Kambhampati, S., Black, W.C., and Rai, K.S., RAPD PCR for identification of mosquito species and populations: Techniques and statistical analysis, J. Med. Entomol., 1992, vol. 29, pp. 939–945.

    Article  CAS  PubMed  Google Scholar 

  21. Felsenstein, J., Evolutionary trees from DNA sequences: A maximum likelihood approach, J. Mol. Evol., 1981, vol. 17, pp. 368–376.

    Article  CAS  PubMed  Google Scholar 

  22. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huson, D.H., Richter, D.C., Rausch, C., Dezulian, T., Franz, M., and Rupp, R., Dendroscope–An interactive viewer for large phylogenetic trees, BMC Bioinf., 2007, no. 8, p.460.

    Article  Google Scholar 

  24. Ronsted, N., Chase, M.W., Albach, D.C., and Bello, M.A., Phylogenetic relationships within Plantago (Plantaginaceae): Evidence from nuclear ribosomal ITS and plastid trn L-F sequence data, Bot. J. Linn. Soc., 2002, vol. 139, pp. 323–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjana Kaul.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, B., Kotwal, S., Dhar, M.K. et al. Genetic diversity analysis in Plantago ovata and some of its wild allies using RAPD markers. Russ. Agricult. Sci. 42, 37–41 (2016). https://doi.org/10.3103/S1068367416010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367416010055

Keywords

Navigation