Skip to main content
Log in

Influence of the Calcination Temperature on the Thermal Characteristics of Peat-Based Biochar

  • COKE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The influence of pyrolysis on biochar produced by the hydrothermal carbonization of peat is studied. The following characteristics of the pyrolytic product obtained from biochar are compared with those of semicoke used in the metallurgical industry: the ash content, the yield of volatiles, and the calorific value. Synthetic semicoke produced by calcination of biochar above 600°C for 1 h meets the requirements of the metallurgical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Milne, J.L., Cameron, J.C., Page, L.E., et al., Report from workshop on biological capture and utilization of CO2, 2009. http://gcep.stanford.edu/pdfs/BiologicalCaptureandUtilizationWorkshop-Report.pdf.

  2. Li, Y., Markley, B., Mohan, A.R., et al., Utilization of carbon dioxide from coal-fired power plant for the production of value added product, 23rd Annu. Int. Pittsburgh Coal Conf., Pittsburgh, Pa., 2006. https://www.researchgate.net/publication/255603618_ Utilization_of_carbon_dioxide_from_coalfired_power_ plant_for_the_production_of_valueadded_products.

  3. Smolina, M.Yu., Justification of complex processing of raw material (on example of coal company OOO Sibugol’), Molodezh’ i nauka. Sbornik materialov IX Vserossiiskoi nauchno-tekhnicheskoi konferentsii studentov, aspirantov i molodykh uchenykh s mezhdunarodnym uchastiem, posvyashchennoi 385-letiyu so dnya osnovaniya g. Krasnoyarska (Youth and Science: Proc. 9th All-Russian Sci.-Tech. Conf. of Students, Doctoral Students, and Young Scientists with Int. Participation Dedicated to 385th Anniversary of the City of Krasnoyarsk), Krasnoyarsk: Sibirskii Fed. Univ., 2013.

  4. Quadrelli, A., Carbon capture, utilization and storage, SETIS Magю, 2016, no. 11, p. 52.

  5. Biofuels Production, Babu, V., Thapliyal, A., and Patel, G.K., Eds., Salem, Mass.: Scrivener Publishing, 2014. https://www.gov.kz/uploads/2020/10/7/55715e1de97-ee812397cfd57055cfd1f_original.6064251.pdf.

    Google Scholar 

  6. Krylova, A.Yu., and Zaichenko, V.M., Hydrothermal carbonization of biomass: A review, Solid Fuel Chem., 2018, vol. 52, no. 2, pp. 91–103.  https://doi.org/10.3103/S0361521918020076

    Article  CAS  Google Scholar 

  7. Bergius, F., Die Anwendung hoher Drücke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle, Knapp W., Knapp, W., Ed., Halle a. d. Saale, 1913, pp. 41–58.

    Google Scholar 

  8. Yan, W., Acharjee, T.C., Coronella, C.J., and Vásquez, V.R., Thermal pretreatment of lignocellulosic biomass, Environ. Progr. Sustainable Energy, 2009, vol. 28, no. 3, pp. 435–440.  https://doi.org/10.1002/ep.10385

    Article  CAS  Google Scholar 

  9. Reza, M.T., Hydrothermal carbonization of lignocellulosic biomass, Master Thesis, Reno, Nev.: Univ. of Nevada, 2011.

  10. Ramke, H.-G., Blohse, D., Lehmann, H.-J., and Fettig, J., Hydrothermal carbonization of organic waste, 12th Int. Waste Management and Landfill Symp., Sardinia, Italy, 2009, CISA Publisher, 2009. http://www.th-owl.de/fb8/fachgebiete/abfallwirtschaft/ pdf/Sardinia_2009_HTC_Inter net.pdf.

  11. Industrial Scale Hydrothermal Carbonization: New Applications for Wet Biomass Waste, De Mena Pardo, B., Doyle, L., Renz, M. and Salimbeni, A., Eds., Bremerhaven: ttz, 2016.

  12. Funke, A. and Ziegler, F., Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering, Biofuels, Bioprod. Biorefin., 2010, vol. 4, no. 2, pp. 160–177.  https://doi.org/10.1002/bbb.198

    Article  CAS  Google Scholar 

  13. Sevilla, M. and Fuertes, A.B., The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 2009, vol. 47, no. 9, pp. 2281–2289.  https://doi.org/10.1016/j.carbon.2009.04.026

    Article  CAS  Google Scholar 

  14. Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal., M.J., Jr., and Tester, J.W., Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy Environ. Sci., 2008, vol. 1, pp. 32–65.  https://doi.org/10.1039/B810100K

    Article  CAS  Google Scholar 

  15. Reza, M.T., Yan, W., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Coronella, Ch.J., and Vásquez, V.R., Reaction kinetics of hydrothermal carbonization of loblolly pine, Bioresour. Technol., 2013, vol. 139, pp. 161–169.  https://doi.org/10.1016/j.biortech.2013.04.028

    Article  CAS  PubMed  Google Scholar 

  16. Reza, M.T., Lynam, J.G., Uddin, M.H., and Coronella, C.J., Hydrothermal carbonization: fate of inorganics, Biomass Bioenergy, 2013, vol. 49, pp. 86–94.  https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  CAS  Google Scholar 

  17. Reza, M.T., Uddin, M.H., Lynam, J.G., Hoekman, S.K., and Coronella, Ch.J., Hydrothermal carbonization of loblolly pine: Reaction chemistry and water balance, Biomass Convers. Biorefin., 2014, vol. 4, pp. 311–321.  https://doi.org/10.1007/s13399-014-0115-9

    Article  CAS  Google Scholar 

  18. Krysanova, K.O., Zaichenko, V.M., Sychev, G.A., and Krylova, A.Yu., Effect of temperature on the hydrothermal carbonization of peat, Solid Fuel Chem., 2018, vol. 52, no. 6, pp. 370–372.  https://doi.org/10.3103/S036152191806006X

    Article  CAS  Google Scholar 

  19. Krylova, A., Krysanova, K., Kulikova, M., and Kulikov, A., Non-catalytic dissolution of biochar obtained by hydrothermal carbonization of sawdust in hydrogen donor solvent, Energies, 2021, vol. 14, no. 18, p. 5890. https://doi.org/10.3390/en14185890

    Article  CAS  Google Scholar 

  20. Chen, W.-H., Wang, Ch.-W., Ong, H.C., Show, P.L., and Hsieh, T.-H., Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin, Fuel, 2019, vol. 258, p. 116168.  https://doi.org/10.1016/j.fuel.2019.116168

    Article  CAS  Google Scholar 

  21. Wang, Y., Qiu, L., Zhu, M., Sun, G., Zhang, T., and Kang, K., Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of Eucommia ulmoides Oliver for the production of solid biofuel, Sci. Rep., 2019, vol. 9, p. 5535.  https://doi.org/10.1038/s41598-019-38849-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, G., Yang, L., Gao, Y., Xu, J., Chen, H., Zhu, Yu., Wang, Yi., Liao, Ch., Lu, Ch., and Zhu, Ch., Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA, Fuel, 2019, vol. 244, pp. 479–491.  https://doi.org/10.1016/j.fuel.2019.02.039

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Foundation for Fundamental Research (project 20-08-00862A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Krylova, K. O. Krysanova, Y. D. Pudova or P. K. Muravsky.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylova, A.Y., Krysanova, K.O., Pudova, Y.D. et al. Influence of the Calcination Temperature on the Thermal Characteristics of Peat-Based Biochar. Coke Chem. 65, 335–341 (2022). https://doi.org/10.3103/S1068364X22080038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X22080038

Navigation