Skip to main content
Log in

A New Method for Measuring Kinetic Parameters of Nonisothermal Coke and Sinter Reaction under Different CO Concentrations

  • COKE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The gas–solid coupling reaction between sinter and coke was analyzed by the thermogravimetric method with a nonisothermal heating rate not fixed. The reaction was suitable for the relevant kinetic parameters of chemically controlled gas–solid reaction. The new method is applied to the gas–solid coupling reaction of ore and coke heated to 1200°C. In the calculation of the new method, the kinetic parameters of the coupling reaction between sinter and coke with large dosage and size are obtained by using the change of gas concentration in several groups of heating experiments and the introduction of model-free method (isoconversional method). The effectiveness of the new method is verified by comparing the results of nonisothermal kinetic experiments with the corresponding isothermal experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Ergun, S., Kinetics of reaction of carbon dioxide with carbon, J. Phys. Chem., 1956, vol. 60, no. 4, pp. 480–485.

    Article  CAS  Google Scholar 

  2. Friedman, H.L., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Part C: Polym. Symp., 1964, vol. 6, no. 1, pp. 183–195.

    Article  Google Scholar 

  3. Strange, J.F. and Walker, P.L., Carbon-carbon dioxide reaction: Langmuir–Hinshelwood kinetics at intermediate pressures, Carbon, 1976, vol. 14, no. 6, pp. 345–350.

    Article  CAS  Google Scholar 

  4. Fruehan, R.J., The rate of reduction of iron oxides by carbon, Metall. Trans. B, 1977, vol. 8, no. 1, pp. 279–286.

    Article  Google Scholar 

  5. Ramachandran, P.A. and Doraiswamy, L.K., Modeling of noncatalytic gas–solid reactions, AIChE J., 1982, vol. 28, no. 6, pp. 881–900.

    Article  CAS  Google Scholar 

  6. Freund, H., Gasification of carbon by CO2: a transient kinetics experiment, Fuel, 1986, vol. 65, no. 1, pp. 63–66.

    Article  CAS  Google Scholar 

  7. Amitava, B., Amit, G., Prasad, K.K., Sarkar, S.B., and Ray, H.S., Thermogravimetric studies on the reoxidation of direct reduced iron at high temperatures, ISIJ Int., 1989, vol. 29, no. 9, pp. 753–760.

    Article  Google Scholar 

  8. Morales, R.D., Rodríguez-Hernández, H., Garnica-González, P., and Romero-Serrano, J.A., A mathematical model for the reduction kinetics of iron oxide in electric furnace slags by graphite injection, ISIJ Int., 1997, vol. 37, no. 11, pp. 1072–1080.

    Article  CAS  Google Scholar 

  9. Vyazovkin, S. and Wight, C.A., Isothermal and nonisothermal kinetics of thermally stimulated reactions of solids, Int. Rev. Phys. Chem., 1998, vol. 17, no. 3, pp. 407–433.

    Article  CAS  Google Scholar 

  10. Rfo, J.J.M. and Martins, F.G., Kinetic analysis of thermogravimetric data obtained under linear temperature programming—a method based on calculations of the temperature integral by interpolation, Thermochim. Acta, 2002, vol. 390, nos. 1–2, pp. 195–211.

    Article  Google Scholar 

  11. Lin, H.Y., Chen, Y.W., and Li, C., The mechanism of reduction of iron oxide by hydrogen, Thermochim. Acta, 2003, vol. 400, nos. 1–2, pp. 61–67.

    Article  CAS  Google Scholar 

  12. Pineau, A., Kanari, N., and Gaballah, I., Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 2006, vol. 447, no. 1, pp. 89–100.

    Article  CAS  Google Scholar 

  13. Everson, R.C., Neomagus, H.W.J.P., and Njapha, D., Kinetic analysis of nonisothermal thermogravimetric analyser results using a new method for the evaluation of the temperature integral and multi-heating rates, Fuel, 2006, vol. 85, no. 3, pp. 418–422.

    Article  CAS  Google Scholar 

  14. Khawam, A. and Flanagan, D., Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies, Thermochim. Acta, 2005, vol. 429, no. 1, pp. 93–102.

    Article  CAS  Google Scholar 

  15. Liu, Z., Wang, Q., Zou, Z., and Tan, G., Arrhenius parameters determination in nonisothermal conditions for the uncatalyzed gasification of carbon by carbon dioxide, Thermochim. Acta, 2011, vol. 512, nos. 1–2, pp. 1–4.

    Article  CAS  Google Scholar 

  16. Buczyński, R., Czerski, G., Zubek, K., Weber, R., and Grzywacz, P., Evaluation of carbon dioxide gasification kinetics on the basis of nonisothermal measurements and CFD modeling of the thermogravimetric analyser, Fuel, 2018, vol. 228, pp. 50–61.

    Article  Google Scholar 

  17. Chatterjee, P.K., Application of thermogravimetric techniques to reaction kinetics, J. Polym. Sci., Part A: Gen. Pap., 1965, vol. 3, no. 12, pp. 4253–4262.

    CAS  Google Scholar 

  18. Rao, Y.K., The kinetics of reduction of hematite by carbon, Metall. Trans., 1971, vol. 2, no. 5, pp. 1439–1447.

    Article  CAS  Google Scholar 

  19. Freeman, E.S. and Carroll, B., The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem., 1958, vol. 62, no. 4, pp. 394–397.

    Article  CAS  Google Scholar 

  20. Huang, B.H. and Lu, W.K., Kinetics and mechanisms of reactions in iron ore / coal composites, ISIJ Int., 2007, vol. 33, no. 10, pp. 1055–1061.

    Article  Google Scholar 

  21. Pineau, A., Kanari, N., and Gaballah, I., Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 2007, vol. 456, no. 2, pp. 75–88.

    Article  CAS  Google Scholar 

  22. Abu-Sehly, A.A., Variation of the activation energy of the glass transition in amorphous Se thin film: isoconversional analysis, Thermochim. Acta, 2010, vol. 501, no. 1, pp. 103–107.

    Article  CAS  Google Scholar 

  23. Flanagan, D.R., Role of isoconversional methods in varying activation energies of solid-state kinetics: I. isothermal kinetic studies, Thermochim. Acta, 2005, vol. 436, nos. 1–2, pp. 101–112.

    Article  Google Scholar 

  24. Ozawa, T., A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 1965, vol. 38, no. 11, pp. 1881–1886.

    Article  CAS  Google Scholar 

  25. Flynn, J.H. and Wall, L.A., A direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci., Part C: Polym. Lett., 1966, vol. 4, no. 5, pp. 323–328.

    CAS  Google Scholar 

  26. Vyazovkin, S., Modification of the integral isoconversional method to account for variation in the activation energy, J. Comput. Chem., 2001, vol. 22, no. 2, pp. 178–183.

    Article  CAS  Google Scholar 

  27. Tang, W. and Chen, D., An integral method to determine variation in activation energy with extent of conversion, Thermochim. Acta, 2005, vol. 433, no. 1, pp. 72–76.

    Article  CAS  Google Scholar 

  28. Budrugeac, P.J., Differential non-linear isoconversional procedure for evaluating the activation energy of nonisothermal reactions, J. Therm. Anal. Calorim., 2002, vol. 68, no. 1, pp. 131–139.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The support of The National Natural Science Foundation of China (NSFC, Projects U1361212, 51704149, and 51634004) is broadly acknowledged for the funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin Jin, Wang, Q. & Zhang, S. A New Method for Measuring Kinetic Parameters of Nonisothermal Coke and Sinter Reaction under Different CO Concentrations. Coke Chem. 64, 256–270 (2021). https://doi.org/10.3103/S1068364X21060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X21060028

Keywords:

Navigation