Skip to main content
Log in

Ash residue from droplets of organic coal–water fuels burned at different oxidant temperatures

  • Coal
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The ash residue formed in the combustion of individual droplets (initial radius 0.5–2.0 mm) of organic coal–water fuels at different oxidizing-agent temperatures in an oxidant (hot-air) flux is studied experimentally. The main components of the fuel suspensions are as follows: coal filter cake; spent motor, transformer, and turbine oil; water; and a specialized plasticizer (wetting agent). The temperature and speed of the plasticizer vary in the ranges 600–1100 K and 0.5–5.0 m/s, corresponding to moderate- and low-temperature combustion (relative to traditional power-industry conditions). The mass of unburnt fuel components of the ash residue is determined. The elementary composition of the ash residue is analyzed. The influence of the oxidant temperature and the fuel components on the characteristics of the ash residue after combustion is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bukhonov, D.Yu. and Morozov, V.V., Efficiency of the multipurpose use of solid fuel at thermal power stations, Therm. Eng., 2003, vol. 50, pp. 1039–1042.

    Google Scholar 

  2. Khodakov, G.S., Gorlov, E.G., and Golovin, G.S., Production and pipeline transportation of coal-water slurry fuel, Solid Fuel Chem., 2006, vol. 40, pp. 19–35.

    Google Scholar 

  3. Lior, N., Energy resources and use: the present situation and possible paths to the future, Energy, 2008, vol. 33, pp. 842–857.

    Article  CAS  Google Scholar 

  4. Coal Information 2012, Luxembourg: International Energy Agency, 2012.

  5. International Energy Outlook with Projections to 2040, Washington, DC: US Energy Information Administration, 2013.

  6. BP Statistical Review of World Energy, London: BP, 2015.

  7. Coal Facts 2014. Based on Data Provided by the International Energy Agency and the BPStatistical Review of World Energy, London: World Coal Association, 2014.

  8. Key World Energy Statistics. 2014, Paris: International Energy Agency, 2014.

  9. Kontorovich, A.E., Epov, M.I., and Eder, L.V., Longterm and medium-term scenarios and factors in world energy perspectives for the 21st century, Russ. Geol. Geophys., 2014, vol. 55, pp. 534–543.

    Article  Google Scholar 

  10. Chayka, O.G., Kovalchuk, O.Z., and Chayka, Y.A., Monitoring the formation of waste oils, Proc. Sci. Works., Lviv: Lviv Polytechnic, 2009, pp. 221–224.

    Google Scholar 

  11. Tripathi, A.K., Ojha, D.K., and Vinu, R., Selective production of valuable hydrocarbons from waste motorbike engine oils via catalytic fast pyrolysis using zeolites, J. Anal. Appl. Pyrolysis, 2015, vol. 114, pp. 281–292.

    Article  CAS  Google Scholar 

  12. Baranova, M.P. and Kuznetsov, B.N., The effect of brown coal moisture content on the properties of highly concentrated water-coal suspensions, Khim. Tverd. Tela, 2003, no. 6, pp. 20–26.

    Google Scholar 

  13. Gajewski, W., Kijo-Kleczkowska, A., and Leszczynski, J., Analysis of cyclic combustion of solid fuels, Fuel, 2009, vol. 88, pp. 221–234.

    Article  CAS  Google Scholar 

  14. Chen, R., Wilson, M., Leong, Y.K., et al., Preparation and rheology of biochar, lignite char and coal slurry fuels, Fuel, 2011, vol. 90, pp. 1689–1695.

    Article  CAS  Google Scholar 

  15. Kijo-Kleczkowska, A., Combustion of coal-water suspensions, Fuel, 2011, vol. 90, pp. 865–877.

    Article  CAS  Google Scholar 

  16. Syrodoi, S.V., Salomatov, V.V., and Kuznetsov, G.V., Numerical simulation of ignition of a coal-water particle with regard to vaporization and endothermal decomposition of the solid fuel, Polzunovskii Vestn., 2013, no. 4/3, pp. 28–32.

    Google Scholar 

  17. Yu, J., Zhou, K., and Ou, W., Mass transfer coefficients considering effects of steam in oxy-fuel combustion of coal char, Fuel, 2013, vol. 111, pp. 48–56.

    Article  CAS  Google Scholar 

  18. Borodulya, V.A., Buchilko, E.K., and Vinogradov, L.M., Some special features of combusting the coal-water fuel made of Belarussian brown coals in the fluidized bed, Therm. Eng., 2014, vol. 61, no. 7, pp. 497–502.

    Article  CAS  Google Scholar 

  19. Kuznetsov, G.V., Salomatov, V.V., and Syrodoi, S.V., The effect of heat transfer conditions on the ignition characteristics of water-coal fuel, Teploenergetika, 2015, no. 10, pp. 16–21.

    Google Scholar 

  20. Wilczynska-Michalik, W., Moryl, R., Sobczyk, J., and Michalik, M., Composition of coal combustion byproducts: the importance of combustion technology, Fuel Process. Technol., 2014, vol. 124, pp. 35–43.

    Article  CAS  Google Scholar 

  21. Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A., Mathematical simulation of the ignition of coal particles in airflow, Solid Fuel Chem., 2015, vol. 49, no. 2, pp. 73–79.

    Article  CAS  Google Scholar 

  22. Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A., Low-temperature ignition of coal particles in an airflow, Russ. J. Phys. Chem. B, 2015 vol. 9, no. 2, pp. 242–249.

    Article  CAS  Google Scholar 

  23. Glushkov, D.O., Strizhak, P.A., and Vysokomornaya, O.V., Numerical research of heat and mass transfer during low-temperature ignition of a coal particle, Therm. Sci., 2015, vol. 19, no. 1, pp. 285–294.

    Article  Google Scholar 

  24. Gorlov, E.G., Composite water fuel from coal and oil products, Khim. Tverd. Tela, 2004, no. 6, pp. 50–61.

    Google Scholar 

  25. Khodakov, G.S., Gorlov, E.G., and Golovin, G.S., Coal fuel slurry, Khim. Tverd. Tela, 2005, no. 6, pp. 15–32.

    Google Scholar 

  26. Khodakov, G.S., Coal-water suspensions in power engineering, Therm. Eng., 2007, vol. 54, no. 1, pp. 36–47.

    Article  Google Scholar 

  27. Lishtvan, I.I., Falyushin, P.L., Smolyachkova, E.A., and Kovrik, S.I., Fuel suspensions based on fuel oil, peat, waste wood, and charcoal, Solid Fuel Chem., 2009, vol. 43, no. 1, pp. 1–4.

    Article  Google Scholar 

  28. Red'kina, N.I., Khodakov, G.S., and Gorlov, E.G., Coal fuel slurry for internal combustion engines, Solid Fuel Chem., 2013, vol. 47, no. 5, pp. 306–314.

    Article  Google Scholar 

  29. Salomatov, V.V., Prirodookhrannye tekhnologii na teplovykh i atomnykh elektrostantsiyakh (Nature Conservation Technologies at Thermal and Atomic Electric Power Stations), Novosibirsk: Izd. NGTU, 2006.

  30. Sheindlin, A.E., Problema novoi energetiki (New Power Engineering Problems), Moscow: Nauka, 2006.

    Google Scholar 

  31. Hanjalic, K., Krol, R., and Lekic, A., Sustainable Energy Technologies: Options and Prospects, Springer, 2008.

    Book  Google Scholar 

  32. Chebochakova, D.A., Glushkov, D.O., Lyakhovskaya, O.E., and Sukhanov, S.V., Ignition of coal dust from the Tomsk region Talovsky deposit by air flow, MATEC Web Conf., 2015, vol. 23, artic. 01045, pp. 1–4.

    Google Scholar 

  33. Glushkov, D.O., Strizhak, P.A., and Vershinina, K.Yu., Hot surface ignition of a composite fuel droplet, MATEC Web Conf., 2015, vol. 23, artic. 01063, pp. 1–4.

    Google Scholar 

  34. Vargaftik, N.B., Tables of Thermophysical Properties of Liquids and Gases, New York: Hemisphere Publ., 1975, ed. 2.

  35. Williams, F.A., Combustion Theory, Boulder: Westview Press, 1985.

    Google Scholar 

  36. Bennet, J.M., Ignition of combustible liquids by heated surfaces, Process Saf. Prog., 2001, vol. 20, no. 1, pp. 29–36.

    Article  Google Scholar 

  37. Warnatz, J., Maas, U., and Dibble, R.W., Combustion. Physical and Chemical Fundamentals, Modeling and Simulations, Experiments, Pollutant Formation, Berlin: Springer, 2006.

    Google Scholar 

  38. Ulanovskii, M.L., Heat of combustion of coal: basic principles and new calculation methods, Coke Chem., 2010, vol. 53, no. 9, pp. 322–329.

    Article  Google Scholar 

  39. Kopeliovich, L.V., Oxide content in ash and the petrographic composition and caking properties of coal, Coke Chem., 2010, vol. 53, no. 9, pp. 330–332.

    Article  Google Scholar 

  40. Miroshnichenko, D.V. and Balaeva, Ya.S., Comparison of methods of predicting the higher thermal combustion of coal, Coke Chem., 2011, vol. 54, no. 11, pp. 398–402.

    Article  Google Scholar 

  41. Zaostrovskii, A.N., Sarychev, V.D., Umanskii, A.A., and Murko, V.I., Thermal analysis of coal and watercoal suspensions, Coke Chem., 2012, vol. 55, no. 1, pp. 10–14.

    Article  Google Scholar 

  42. Ulanovskii, M.L., Heats of combustion from lignite to graphite, Coke Chem., 2012, vol. 55, no. 8, pp. 289–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Lyrshchikov.

Additional information

Original Russian Text © S.Yu. Lyrshchikov, P.A. Strizhak, S.A. Shevyrev, 2016, published in Koks i Khimiya, 2016, No. 5, pp. 11–19.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyrshchikov, S.Y., Strizhak, P.A. & Shevyrev, S.A. Ash residue from droplets of organic coal–water fuels burned at different oxidant temperatures. Coke Chem. 59, 178–185 (2016). https://doi.org/10.3103/S1068364X16050033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X16050033

Keywords

Navigation