Skip to main content
Log in

Effect of Buffer Gas Influence on Magnetically-Induced Transitions in 87Rb Atoms, D2 Line

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Unusual magnetically-induced (MI) transitions Fg =1 → Fe = 3 of the 87Rb atoms, D2 lines, forbidden in the absence of magnetic field but becoming significant in magnetic fields >500 G have been studied. The effect of the buffer gas of neon on MI transitions was studied using the process of resonant absorption of laser radiation in a nanocell (NC) with Rb atomic vapors with an NC thickness L = 390 nm and a buffer gas of neon with the pressures of 6 and 20 Torr. The use of NC enables to achieve high spectral resolution and selectively study the MI transitions. It was found that the addition of neon to the cell results in a decrease in the amplitude of the MI transition and its spectral broadening (for some optical processes, the addition of a buffer gas results in an improvement of the parameters). The optimal power of a CW laser for the effective formation of the MI transitions was found to be equal to 10 μW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tremblay, P., Michaud, A., Levesque, M., Thériault, S., Breton, M., Beaubien, J., and Cyr, N., Phys. Rev. A, 1990, vol. 42, p. 2766.

    Article  ADS  Google Scholar 

  2. Alexandrov, E.B., Khvostenko, G.I., and Chaika, M.P., Interferentsiya atomnykh sostoyaniy (Interference of Degenerated Atomic States), Moscow: Nauka, 1991 [in Russian].

  3. Weller, L., Kleinbach, K.S., Zentile, M.A., Knappe, S., Hughes, I.G., and Adams, C.S., Opt. Lett., 2012, vol. 37, p. 3405.

    Article  ADS  Google Scholar 

  4. Weller, L., Kleinbach, K.S., Zentile, M.A., Knappe, S., Adams, C.S., and Hughes, I.G., J. Phys.B: At. Mol. Opt. Phys., 2012, vol. 45, p. 215005.

    Article  ADS  Google Scholar 

  5. Zentile, M.A., Andrews, R., Weller, L., Knappe, S., Adams, C.S., and Hughes, I.G., J. Phys. B: At. Mol. Opt. Phys., 2014, vol. 47, p. 075005.

    Article  ADS  Google Scholar 

  6. Scotto, S., Ciampini, D., Rizzo, C., and Arimondo, E., Phys. Rev., A, 2015, vol. 92, p. 063810.

    Article  ADS  Google Scholar 

  7. Scotto, S., Rubidium vapors in high magnetic fields. Atomic Physics [physics.atom-ph]. Université Paul Sabatier–Toulouse III, 2016.

  8. Tonoyan, A., Sargsyan, A., Klinger, E., Hakhumyan, G., Leroy, C., Auzinsh, M., Papoyan, A., and Sarkisyan, D., EuroPhys. Lett., 2018, vol. 121, p. 53001.

    Article  ADS  Google Scholar 

  9. Olsen, A., Patton, B., Jau, Y.Y., and Happer, W., Phys. Rev., A, 2011, vol. 84, p. 063410.

    Article  ADS  Google Scholar 

  10. Zentile, M., Keaveney, J., Weller, L., Whiting, D.J., Adams, C.S., and Hughes, I.G., Comput. Phys. Commun., 2015, vol. 189, p. 162.

    Article  ADS  Google Scholar 

  11. Sargsyan, A., Tonoyan, A., Papoyan, A., and Sarkisyan, D., Opt. Lett., 2019, vol. 44, p. 1391.

    Article  ADS  Google Scholar 

  12. Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2004.

    Google Scholar 

  13. Wynands, R. and Nagel, A., Appl. Phys. B, Lasers Opt., 1999, vol. 68, p. 1.

    Article  ADS  Google Scholar 

  14. Fleischhauer, M., Imamoglu, A., and Marangos, J.P., Rev. Mod. Phys., 2005, vol. 77, p. 633.

    Article  ADS  Google Scholar 

  15. Thornton, D.E., Phillips, G.T., and Perram, G.P., Opt. Commun., 2011, vol. 284, p. 2890.

    Article  ADS  Google Scholar 

  16. Sargsyan, A., Amiryan, A., Cartaleva, S., and Sarkisyan, D., J. Exp. Theor. Phys., 2017, vol. 125, p. 43.

    Article  ADS  Google Scholar 

  17. Sargsyan, A., Amiryan, A., Pashayan-Leroy, Y., Leroy, C., Papoyan, A., and Sarkisyan, D., Opt. Lett., 2019, vol. 44, p. 5533.

    Article  ADS  Google Scholar 

  18. Vassiliev, V.V., Zibrov, S.A., and Velichansky, V.L., Rev. Sci. Instrum., 2006, vol. 77, p. 013102.

    Article  ADS  Google Scholar 

  19. Pitz, G.A., Sandoval, A.J., Tafoya, T.B., Klennert, W.L., and Hostutler, D.A., J. Quant. Spectr. Radiat. Transfer., 2014, vol. 140, p. 18.

    Article  ADS  Google Scholar 

  20. Sargsyan, A., Vartanyan, T., and Sarkisyan, D., Optics and Spectroscopy, 2021, vol. 129, p. 1173.

  21. Peyrot, T., Beurthe, C., Coumar, S., Roulliay, M., Perronet, K., Bonnay, P., Adams, C.S., Browaeys, A., and Sortais, Y.R.P., Opt. Lett., 2019, vol. 44, p. 1940.

    Article  ADS  Google Scholar 

  22. Cutler, T.F., Hamlyn, W.J., Renger, J., Whittaker, K.A., Pizzey, D., Hughes, I.G., Sandoghdar, V., and Adams, C.S., Phys. Rev. Applied., 2020, vol. 14, p. 034054.

    Article  ADS  Google Scholar 

Download references

Funding

This investigation was carried out within the frameworks of the Scientific Project No. 21Т-1С005 and with the financial support of the Science Committee of the Republic of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Sarkisyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A.D., Sarkisyan, A.S. & Sarkisyan, D.H. Effect of Buffer Gas Influence on Magnetically-Induced Transitions in 87Rb Atoms, D2 Line. J. Contemp. Phys. 57, 105–111 (2022). https://doi.org/10.3103/S1068337222020165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337222020165

Keywords:

Navigation