Skip to main content
Log in

Recording of geometric phase elements based on liquid crystal polymers

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

A technique is developed for recording the centrally-symmetric liquid crystal phase plates with the anisotropic orientation of molecules providing a smooth change of the optical axis in a thin film of liquid crystal polymer. The technique enables one to record the elements with the cylindrically-symmetric and planar-symmetric distributions. Such structures can be used to develop the optical elements with the new functional possibilities. Using the developed techniques, the polarization-sensitive Fresnel lens is realized which is functioning either as a collecting or as a scattering lens for the light beams with the orthogonal circular polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stohr, J. and Samant, M.G., J. Electr. Spectroscopy Relat. Phenomena, 1999, vol. 98–99, p. 189.

    Article  Google Scholar 

  2. Urbach, W., Boix, M., and Guyon, E., Appl. Phys. Lett., 1974, vol. 25, p. 479.

    Article  ADS  Google Scholar 

  3. Chigrinov, V., Kozenkov, V., and Kwok, H.S., Photoalignment of Liquid Crystalline Materials: Physics and Applications, New York: John Wiley & Sons, 2008.

    Book  Google Scholar 

  4. Tabiryan, N.V., Nersisyan, S.R., Xianyu, H., and Serabyn, E., IEEE Aerospace Conf. Proceed., 2012, vol. 1, pp. 1–12.

    Google Scholar 

  5. Nersisyan, S.R., Tabiryan, N.V., Steeves, D.M., and Кimball, B.R., J. Nonlin. Opt. Physics & Materials, 2009, vol. 18, p. 1.

    Article  ADS  Google Scholar 

  6. Pancharatnam, S., Proc. Indian Acad. Sci. Sect. A, 1956, vol. 44, p. 247.

    MathSciNet  Google Scholar 

  7. Berry, M.V., J. Mod. Opt., 1987, vol. 34, p. 1401.

    Article  ADS  Google Scholar 

  8. Simon, R., Kimble, H.J., and Sudharshan, E.C.G., Phys. Rev. Lett., 1988, vol. 61, p. 19.

    Article  ADS  Google Scholar 

  9. Kwiat, P.G. and Chiao, R.Y., Phys. Rev. Lett., 1991, vol. 66, p. 588.

    Article  ADS  Google Scholar 

  10. Bomzon, Z., Kleiner, V., and Hasman, E., Opt. Lett., 2001, vol. 26, p. 1424.

    Article  ADS  Google Scholar 

  11. Marrucci, L., Manzo, C., and Paparo, D., arXiv: 712.0101. Physics. Optics (2007).

    Google Scholar 

  12. Kim, J., Li, Y., Miskiewicz, M.N., Oh, Ch., Kudenov, M.W., and Escuti, M.J., Optica, 2015, vol. 2, p. 958.

    Article  Google Scholar 

  13. Tabiryan, N.V., Serak, S.V., Roberts, D.E., Steeves, D.M., and Kimball, B.R., Optics Express, 2015, vol. 23, p. 25783.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Margaryan.

Additional information

Original Russian Text © H.L. Margaryan, V.K. Abrahamyan, D.L. Hovhannisyan, N.H. Hakobyan, V.M. Aroutiounian, V.V. Belyaev, A.S. Solomatin, 2017, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2017, Vol. 52, No. 3, pp. 353–360.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margaryan, H.L., Abrahamyan, V.K., Hovhannisyan, D.L. et al. Recording of geometric phase elements based on liquid crystal polymers. J. Contemp. Phys. 52, 258–263 (2017). https://doi.org/10.3103/S1068337217030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337217030112

Keywords

Navigation