Skip to main content
Log in

Vacuum Breakdown in Multibeam Configuration of a Magnetic Dipole Wave

  • QED PROCESSES IN STRONG LASER FIELD
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

In this work we investigate vacuum breakdown in multipetawatt laser fields of the multibeam configuration corresponding to a converging magnetic dipole wave. Three-dimensional numerical simulation via the particle-in-cell method was used to determine the threshold total laser radiation power required for vacuum breakdown depending on the number of laser beams. It is shown that the minimal vacuum breakdown threshold power of 14 PW is attained when there are 12 beams while for a lower number of beams (from two to six) the threshold increases to 18 PW. The dependence of the growth rate of the quantum-electrodynamic cascade on the number of laser beams is determined in a wide range of total radiation power. Fluctuations in the power of each of the beams are shown to have little effect on both the breakdown threshold and the cascade growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The soft limits of the linear stage allow us to select the values t1 and t2 such that t2t1 is an integer number of periods T and then the growth rate Γ will be determined based on concentration at moments of time with the same field phase.

REFERENCES

  1. Danson, C.N., Haefner, C., Bromage, J., Butcher, T., Chanteloup, J.-C.F., Chowdhury, E.A., Galvanauskas, A., Gizzi, L.A., Hein, J., Hillier, D.I., et al., High Power Laser Sci. Eng., 2019, vol. 7, p. e54.

  2. Marklund, M. and Shukla, P.K., Rev. Mod. Phys., 2006, vol. 78, p. 591.

    Article  ADS  Google Scholar 

  3. Di Piazza, A., Müller, C., Hatsagortsyan, K.Z., and Keitel, C.H., Rev. Mod. Phys., 2012, vol. 84, p. 1177.

    Article  ADS  Google Scholar 

  4. Gonoskov, A., Blackburn, T.G., Marklund, M., and Bulanov, S.S., Rev. Mod. Phys., 2022, vol. 94, p. 045001.

  5. Fedotov, A., Ilderton, A., Karbstein, F., King, B., Seipt, D., Taya, H., and Torgrimsson, G., 2022, arXiv:2203.00019.

  6. Schwinger, J., Phys. Rev., 1951, vol. 82, p. 664.

    Article  ADS  MathSciNet  Google Scholar 

  7. Fedotov, A.M., Laser Phys., 2009, vol. 19, p. 214.

    Article  ADS  Google Scholar 

  8. Bulanov, S.S., Mur, V.D., Narozhny, N.B., Nees, J., and Popov, V.S., Phys. Rev. Lett., 2010, vol. 104, p. 220404.

  9. Gonoskov, A., Gonoskov, I., Harvey, C., Ilderton, A., Kim, A., Marklund, M., Mourou, G., and Sergeev, A., Phys. Rev. Lett., 2013, vol. 111, p. 060404.

  10. Bell, A.R. and Kirk, J.G., Phys. Rev. Lett., 2008, vol. 101, p. 200403.

  11. Fedotov, A.M., Narozhny, N.B., Mourou, G., and Korn, G., Phys. Rev. Lett., 2010, vol. 105, p. 080402.

  12. Nerush, E.N., Kostyukov, I.Y., Fedotov, A.M., Narozhny, N.B., Elkina, N.V., and Ruhl, H., Phys. Rev. Lett., 2011, vol. 106, p. 035001.

  13. Mironov, A.A., Narozhny, N.B., and Fedotov, A.M., Phys. Lett. A, 2014, vol. 378, p. 3254.

    Article  ADS  Google Scholar 

  14. Bashmakov, V.F., Nerush, E.N., Kostyukov, I.Y., Fedotov, A.M., and Narozhny, N.B., Phys. Plasmas, 2014, vol. 21, p. 013105.

  15. Luo, W., Zhu, Y.-B., Zhuo, H.-B., Ma, Y.-Y., Song, Y.-M., Zhu, Z.-C., Wang, X.-D., Li, X.-H., Turcu, I.C.E., and Chen, M., Phys. Plasmas, 2015, vol. 22, p. 063112.

  16. Chang, H.X., Qiao, B., Xu, Z., Xu, X.R., Zhou, C.T., Yan, X.Q., Wu, S.Z., Borghesi, M., Zepf, M., and He, X.T., Phys. Rev. E, 2015, vol. 92, p. 053107.

  17. Vranic, M., Grismayer, T., Fonseca, R.A., and Silva, L.O., Plasma Phys. Control. Fusion, 2017, vol. 59, p. 014040.

  18. Grismayer, T., Vranic, M., Martins, J.L., Fonseca, R.A., and Silva, L.O., Phys. Rev. E, 2017, vol. 95, p. 023210.

  19. Bashinov, A.V., Kumar, P., and Kim, A.V., Quantum Electron., 2018, vol. 48, p. 833.

    Article  ADS  Google Scholar 

  20. Sampath, A. and Tamburini, M., Phys. Plasmas, 2018, vol. 25, p. 083104.

  21. Sorbo, D.D., Blackman, D.R., Capdessus, R., Small, K., Slade-Lowther, C., Luo, W., Duff, M.J., Robinson, A.P.L., McKenna, P., Sheng, Z.-M., et al., New J. Phys., 2018, vol. 20, p. 033014.

  22. Lécz, Z. and Andreev, A., Plasma Phys. Control. Fusion, 2019, vol. 61, p. 045005.

  23. Samsonov, A.S., Nerush, E.N., and Kostyukov, I.Y., Sci. Rep., 2019, vol. 9, p. 11133.

    Article  ADS  Google Scholar 

  24. Jirka, M., Klimo, O., Vranic, M., Weber, S., and Korn, G., Sci. Rep., 2017, vol. 7, p. 15302.

    Article  ADS  Google Scholar 

  25. Gonoskov, I., Aiello, A., Heugel, S., and Leuchs, G., Phys. Rev. A, 2012, vol. 86, p. 053836.

  26. Gonoskov, A., Bashinov, A., Gonoskov, I., Harvey, C., Ilderton, A., Kim, A., Marklund, M., Mourou, G., and Sergeev, A., Phys. Rev. Lett., 2014, vol. 113, p. 014801.

  27. Gonoskov, A., Bashinov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Kim, A., Marklund, M., Meyerov, I., Muraviev, A., and Sergeev, A., Phys. Rev. X, 2017, vol. 7, p. 041003.

  28. Efimenko, E.S., Bashinov, A.V., Bastrakov, S.I., Gonoskov, A.A., Muraviev, A.A., Meyerov, I.B., Kim, A.V., and Sergeev, A.M., Sci. Rep., 2018, vol. 8, p. 2329.

    Article  ADS  Google Scholar 

  29. Efimenko, E.S., Bashinov, A.V., Gonoskov, A.A., Bastrakov, S.I., Muraviev, A.A., Meyerov, I.B., Kim, A.V., and Sergeev, A.M., Phys. Rev. E, 2019, vol. 99, p. 031201(R).

  30. Gelfer, E.G., Mironov, A.A., Fedotov, A.M., Bashmakov, V.F., Nerush, E.N., Kostyukov, I.Yu., and Narozhny, N.B., Phys. Rev. A, 2015, vol. 92, p. 022113.

  31. Gelfer, E.G., Quantum Electron., 2016, vol. 46, p. 310.

    Article  ADS  Google Scholar 

  32. Bashinov, A.V., Efimenko, E.S., Muraviev, A.A., Volokitin, V.D., Meyerov, I.B., Leuchs, G., Sergeev, A.M., and Kim, A.V., Phys. Rev. E, 2022, vol. 105, p. 065202.

  33. Efimenko, E.S., Bashinov, A.V., Muraviev, A.A., Volokitin, V.D., Meyerov, I.B., Leuchs, G., Sergeev, A.M., and Kim, A.V., Phys Rev. E, 2022, vol. 106, p. 015201.

  34. Hewish, A., Rev. Mod. Phys., 1975, vol. 47, p. 567.

    Article  ADS  Google Scholar 

  35. Michel, F.C., Rev. Mod. Phys., 1982, vol. 54, p. 1.

    Article  ADS  Google Scholar 

  36. Beskin, V.S., Phys. Usp., 2018, vol. 61, p. 353.

    Article  ADS  Google Scholar 

  37. Khazanov, E., Shaykin, A., Kostyukov, I., Ginzburg, V., Mukhin, I., Yakovlev, I., Soloviev, A., Kuznetsov, I., Mironov, S., Korzhimanov, A., Bulanov, D., Shaikin, I., Kochetkov, A., Kuzmin, A., Martyanov, M., Lozhkarev, V., Starodubtsev, M., Litvak, A., and Sergeev, A., (2023). Exawatt Center for Extreme Light Studies (XCELS). High Power Laser Science and Engineering, 1–77. https://doi.org/10.1017/hpl.2023.69

  38. Bashinov, A.V., Gonoskov, A.A., Kim, A.V., Mourou, G., and Sergeev, A.M., Eur. Phys. J.: Spec. Top., 2014, vol. 223, p. 1105.

    Google Scholar 

  39. Sarri, G., et al., Nat. Commun., 2015, vol. 6, p. 6747.

    Article  ADS  Google Scholar 

  40. Chen, H., et al., Phys. Rev. Lett., 2010, vol. 105, p. 015003.

  41. Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., and Meyerov, I.B., Comput. Phys. Commun., 2016, vol. 202, p. 204.

    Article  ADS  Google Scholar 

  42. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., and Wallin, E., Phys. Rev. E, 2015, vol. 92, p. 023305.

  43. Baier, V.N., Katkov, V.M., and Fadin V.S., Izlucheniye relyativistskikh elektronov (Radiation of Relativistic Electrons), Moscow: Atomizdat, 1973.

  44. Muraviev, A.A., Bastrakov, S.I., Bashinov, A.V., Gonoskov, A.A., Efimenko, E.S., Kim, A.V., Meyerov, I.B., and Sergeev, A.M., JETP Lett., 2015, vol. 102, p. 148.

    Article  ADS  Google Scholar 

  45. Grismayer, T., Vranic, M., Martins, J.L., Fonseca, R.A., and Silva L.O., Phys. Plasmas, 2016, vol. 23, p. 056706.

  46. Berestetskii, V.B., Lifshitz, E.M., and Pitaevskii, L.P., Teoreticheskaya fizika (Theoretical Physics), vol. 4: Kvantovaya elektrodinamika (Quantum Electrodynamics), Moscow: Nauka, 1974.

Download references

Funding

The work was supported by the WCRC Photonics Center with funding provided by the RF Ministry of Science and Higher Education under Agreement No. 075-15-2022-316 and also supported by the BASIS Foundation for the Development of Theoretical Physics and Mathematics (Grant No. 19-1-5-94-1). The numerical simulation was done using computing resources of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Muraviev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraviev, A.A., Bashinov, A.V., Efimenko, E.S. et al. Vacuum Breakdown in Multibeam Configuration of a Magnetic Dipole Wave. Bull. Lebedev Phys. Inst. 50 (Suppl 6), S652–S659 (2023). https://doi.org/10.3103/S1068335623180094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623180094

Keywords:

Navigation