Skip to main content
Log in

Optimization of the Yield of Low-Threshold Nuclear Reactions under Action of Protons Accelerated Using Terawatt Femtosecond Laser

  • EFFECT OF LASER RADIATION ON MATTER. LASER PLASMA
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The paper consider the possibility to execute nuclear reactions nuclear reactions with low energy threshold by means of terawatt femtosecond laser systems, exemplified by the 11B(p, α)2α and 7Li(p, n)7Be reactions used for neutronless thermonuclear synthesis and production of neutron beams. On the basis of the literature data on the dependences of the average energy and cutoff energy in the spectrum of laser-accelerated protons on the intensity of laser radiation and laser pulse energy, the estimate of the anticipated number of registered events depending on the laser without emission intensity is obtained in the intensity range achievable for compact tabletop laser systems of terawatt power level. It is shown that the optimal intensities for observing the considered reactions lie in the range (1–5) × 1019 W/cm2, whereas the total number of secondary particles per 1 TW of peak power can reach 106 and 108 for the 11B(p, α)2α and 7Li(p, n)7Be reactions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Nedorezov, V.G., Rykovanov, S.G., and Savel’ev, A.B., Phys. Usp., 2021, vol. 64, no. 12, p. 1214.

    Article  ADS  Google Scholar 

  2. Ledingham, K.W.D. and Galster W., New J. Phys., 2010, vol. 12, no. 4, p. 045005.

  3. Hora, H. et al., Laser Part. Beams, 2017, vol. 35, no. 4, p. 730.

    Article  ADS  Google Scholar 

  4. Cirrone, G.A.P. et al., Sci. Rep., 2018, vol. 8, no. 1, p. 1.

    Article  Google Scholar 

  5. Halfon, S. et al., Rev. Sci. Instrum., 2013, vol. 84, no. 12, p. 123507.

  6. Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character, 1933, vol. 141, no. 843, p. 259.

  7. Hora, H. et al., Laser Part. Beams, 2015, vol. 33, no. 4, p. 607.

    Article  ADS  Google Scholar 

  8. Hora, H. et al., Proc. SPIE, 2017, vol. 10241, p. 10241-14.

    Google Scholar 

  9. Munch, M., Kirsebom, O.S., Swartz, J.A., and Fynbo, H.O.U., Eur. Phys. J. A, 2020, vol. 56, no. 1, p. 1.

    Article  Google Scholar 

  10. Rostoker, N., Qerushi, A., and Binderbauer, M., J. Fusion Energy, 2003, vol. 22, no. 2, p. 83.

    Article  ADS  Google Scholar 

  11. Kulcinski, G.L. and Santarius, J.F., J. Fusion Energy, 1998, vol. 17, no. 1, p. 33.

    Article  ADS  Google Scholar 

  12. Belyaev, V.S. et al., Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys., 2005, vol. 72, no. 2, p. 026406.

  13. Picciotto, A. et al., Phys. Rev. X, 2014, vol. 4, no. 3, p. 031030.

  14. Margarone, D. et al., Plasma Phys. Control. Fusion, 2015, vol. 57, no. 1, p. 014030.

  15. Margarone, D. et al., Front. Phys., 2020, vol. 8, no. 343.

  16. Bonvalet, J. et al., Phys. Rev. E, 2021, vol. 103, no. 5, p. 053202.

  17. Hora, H. et al., Energy Environ. Sci., 2010, vol. 3, no. 4, p. 479.

    Article  Google Scholar 

  18. Eliezer, S. et al., Phys. Plasmas, 2016, vol. 23, no. 5, p. 050704.

  19. Hora H. et al., Proc. SPIE, 2015, vol. 9515a, p. 9515.

    Google Scholar 

  20. Borchers, R.R. and Poppe, C.H., Phys. Rev., 1963, vol. 129, no. 6, p. 2679.

    Article  ADS  Google Scholar 

  21. Lancaster, K.L. et al., Phys. Plasmas, 2004, vol. 11, no. 7, p. 3404.

    Article  ADS  Google Scholar 

  22. Bayanov, B. et al., Appl. Radiat. Isot., 2004, vol. 61, no. 5, p. 817.

    Article  Google Scholar 

  23. Halfon, S. et al., Rev. Sci. Instrum., 2014, vol. 85, no. 5, p. 056105.

  24. Tyrsa, V.E. and Burtseva, L.P., Tech. Phys., 2003, vol. 48, no. 7, p. 807.

    Article  Google Scholar 

  25. Pizzone, R.G. et al., Astron. Astrophys., 2003, vol. 398, no. 2, p. 423.

    Article  ADS  Google Scholar 

  26. Pinochet, J., Phys. Educ., 2019, vol. 54, no. 5, p. 055021.

  27. Japanese Atomic Energy Agency. Nuclear Data Center. https://wwwndc.jaea.go.jp.

  28. Taova, S.M. et al., Izv. Ross. Akad. Nauk, Ser. Fiz., 2017, vol. 81, no. 6, p. 732.

    Google Scholar 

  29. Macchi, A., Borghesi, M., and Passoni, M., Rev. Mod. Phys., 2013, vol. 85, no. 2, p. 751.

    Article  ADS  Google Scholar 

  30. Macchi, A., 2017, arXiv: 1712.06443.

  31. The Stopping and Range of Ions in Matter. http://srim.org/.

  32. Toupin, C., Phys. Plasmas, 2001, vol. 8, no. 3, p. 1011.

    Article  ADS  Google Scholar 

  33. Giuffrida, L. et al., Phys. Rev. E, 2020, vol. 101, no. 1, p. 013204.

  34. Neely, D. et al., Appl. Phys. Lett., 2006, vol. 89, no. 2, p. 021502.

  35. Zeil, K. et al., New J. Phys., 2010, vol. 12, no. 4, p. 045015.

  36. Choi, I.W. et al., Appl. Phys. Lett., 2011, vol. 99, no. 18, p. 181501.

  37. Zeil, K. et al., Nat. Commun., 2012, vol. 3, no. 1, p. 1.

    Article  Google Scholar 

  38. Margarone, D. et al., Phys. Rev. Spec. Top. Accel. Beams, 2015, vol. 18, no. 7, p. 071304.

  39. Ogura, K. et al., Opt. Lett., 2012, vol. 37, no. 14, p. 2868.

    Article  ADS  Google Scholar 

  40. Kim, I.J. et al., Phys. Rev. Lett., 2013, vol. 111, no. 16, p. 165003.

  41. Green, J.S. et al., Appl. Phys. Lett., 2014, vol. 104, no. 21, p. 214101.

  42. Zeil, K. et al., Plasma Phys. Control. Fusion, 2014, vol. 56, no. 8, p. 084004.

  43. Passoni, M. et al., Phys. Rev. Spec. Top. Accel. Beams, 2016, vol. 19, no. 6, p. 061301.

  44. Seimetz, M. et al., J. Instrum., 2016, vol. 11, no. 11, p. C11012.

  45. Palaniyappan, S. et al., Nat. Commun., 2015, vol. 6, no. 1, p. 1.

    Article  Google Scholar 

Download references

Funding

The work is supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1361) and within the research program of the National Center of Physics and Mathematics (project no. 4.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Skibina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skibina, V.M., Savel’ev, A.B. Optimization of the Yield of Low-Threshold Nuclear Reactions under Action of Protons Accelerated Using Terawatt Femtosecond Laser. Bull. Lebedev Phys. Inst. 50 (Suppl 2), S194–S203 (2023). https://doi.org/10.3103/S1068335623140142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623140142

Keywords:

Navigation