Skip to main content
Log in

Single-Lens Magnesium Fluoride Monochromator for the 113–140 nm Spectral Range

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

An optical scheme is described for a compact focal monochromator with a plano-convex magnesium-fluoride lens for measuring and analyzing transmission spectra of transparent objects in the vacuum ultraviolet spectral range within air transparency bands in the 113—140 nm spectral range. Short distances between the source and detector in the range from 5 to 40 mm allow operation in air, using the presence of bands of mutual partial transmittance of oxygen and water vapor at wavelengths of 114.2, 116.4, 118.5, 121.2, 123.5, and 127.0 nm. Simulated absorption spectra of air spaces of different lengths are presented in the spectral range of interest. Deuterium lamp emission spectra are experimentally measured in the 113–140 nm spectral range after passing through air gaps of different lengths. The monochromator spectral resolution reaching 50 near the magnesium fluoride absorption edge is defined by the joint contribution of the lens dispersion and radiation filtering in the air spectral transmittance bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Toporets, A.S., Monochromators, Usp. Fiz. Nauk, 1950, vol. 40, no. 2, pp. 255–300. https://doi.org/10.3367/UFNr.0040.195002c.0255

    Article  Google Scholar 

  2. Tur’yanskii, A.G., Konovalov, O.V., Gizha, S.S., and Beilin, N.D., Edge diffraction effect at the refraction of X-rays in a diamond prism, JETP Lett., 2014, vol. 100, no. 8, pp. 540–542. https://doi.org/10.1134/S0021364014200119

    Article  ADS  Google Scholar 

  3. Kolesnikov, A.O., Vishnyakov, E.A., Ragozin, E.N., and Shatokhin, A.N., Imaging broadband soft X-ray transmission-grating spectrograph for a wavelength range λ > 111 Å, Quantum Electron., 2020, vol. 50, no. 10, pp. 967–975. https://doi.org/10.1134/S1063784220110109

    Article  ADS  Google Scholar 

  4. Vishnyakov, E.A., Kolesnikov, A.O., Ragozin, E.N., and Shatokhin, A.N., Normal-incidence imaging spectrograph based on an aperiodic spherical grating for the vacuum spectral region, Opt. Spectrosc., 2018, vol. 125, no. 5, pp. 783–794. https://doi.org/10.1134/S0030400X18110346

    Article  ADS  Google Scholar 

  5. Hashimoto, Sh., Ikeda, T., Takeuchi, H., and Harada, I., Utilization of a prism monochromator as a sharp-cut bandpass filter in ultraviolet Raman spectroscopy, Appl. Spectrosc., 1993, vol. 47, no. 8, pp. 1283–1285. https://doi.org/10.1366/0003702934067775

    Article  ADS  Google Scholar 

  6. Maslov, V.S. and Mitrofanov, A.V., Levenguk microscope with magnesium fluoride lens for microscopic objects observation, in VUV, Proc. VI All-Russian Conference on VUV Physics and Interaction of Radiation with Matter, 1982, p. 236.

  7. Mitrofanov, A.V., Tokarchuk, D.N., Gromova, T.I., Apel, P.Yu., and Didyk, A.Yu., Fabrication of metal microtubes using particle track membranes processing, Radiat. Meas., 1995, vol. 25, no. 1–4, pp. 733–734. https://doi.org/10.1016/1350-4487(95)00234-6

  8. Rubens, H. and Wood, R.W., XXVII. Focal isolation of long heat-waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1911, vol. 21, no. 122, pp. 249–261. https://doi.org/10.1080/14786440208637025

    Article  Google Scholar 

  9. Childs, T.T., Royer, W.A., and Smith, N.V., Evaluation of LiF lenses as monochromators for inverse photoemission spectroscopy, Rev. Sci. Instrum., 1984, vol. 55, no. 10, pp. 1613–1615. https://doi.org/10.1063/1.1137626

    Article  ADS  Google Scholar 

  10. Zaidel, A.N. and Shreider, E.Ya., Vacuum Ultraviolet Spectroscopy, London: Ann Arbor-Humphrey Science Publ., 1970.

    Google Scholar 

  11. Okabe, H., Photochemistry of Small Molecules, New York: Wiley, 1978.

    Google Scholar 

  12. Watanabe, K. and Zelikoff, M., Absorption coefficients of water vapor in the vacuum ultraviolet, J. Opt. Soc. Amer., 1953, vol. 43, no. 9, pp. 753–755. https://doi.org/10.1364/JOSA.43.000753

    Article  ADS  Google Scholar 

  13. Tijt, V.M. and Shatskina, R.V., Atlas of Multiline Spectrum of Molecular Hydrogen: Region 102.5-165 nm, Tallin: Bit, 1981.

  14. Shishatskaya, L.P., Yakovlev, S.A., and Volkova, G.A., Gas-discharge lamps for the vacuum ultraviolet, J. Opt. Technol., 1995, vol. 62, no. 7, pp. 477–479.

    ADS  Google Scholar 

  15. Nevyazhskaya, I.A., Shilina, N.V., Shilov, V.B., and Tyapkov, V.A., Development and production of UV and VUV sources, J. Opt. Technol., 2012, vol. 79, no. 8, pp. 521–523. https://doi.org/10.1364/JOT.79.000521

    Article  Google Scholar 

  16. Williams, M.W. and Arakawa, E.T., Optical properties of crystalline MgF2 from 115 nm to 400 nm, Appl. Opt., 1979, vol. 18, no. 10, pp. 1477–1478. https://doi.org/10.1364/AO.18.001477

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Vishnyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnyakov, E.A., Kolesnikov, A.O. & Mitrofanov, A.V. Single-Lens Magnesium Fluoride Monochromator for the 113–140 nm Spectral Range. Bull. Lebedev Phys. Inst. 49, 164–168 (2022). https://doi.org/10.3103/S1068335622060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622060082

Keywords:

Navigation