Skip to main content
Log in

Target Laser Exposure of Partial CdTe/Si Dislocations at Low Temperature

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The effect of pulsed laser exposure on electronic states formed by partial dislocation cores in cadmium telluride is demonstrated using in situ measurements of low-temperature (5 K) microphotoluminescence. It is shown that laser pulses 5 ns long with a wavelength of 1053 nm allows local transformation of dislocation cores, not affecting the surrounding unperturbed CdTe lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kuciauskas, D., Moseley, J., and Lee, C., Identification of recombination losses in CdSe/CdTe solar cells from spectroscopic and microscopic time-resolved photoluminescence, Sol. RRL, 2021, vol. 5, no. 4, p. 2000775. https://doi.org/10.1002/solr.202000775

  2. Polat, M., Bilgilisoy, E., Arı, O., Öztürk, O., and Selamet, Y., Identifying threading dislocations in CdTe films by reciprocal space mapping and defect decoration etching, J. Appl. Phys., 2018, vol. 124, no. 8, p. 085710. https://doi.org/10.1063/1.5025782

  3. Colegrove, E., Albin, D.S., Moutinho, H.R., Amarasinghe, M., Burst, J.M., and Metzger, W.K., Scalable ultrafast epitaxy of large-grain and single-crystal II-VI semiconductors, Sci. Rep., 2020, vol. 10, no. 1, p. 2426. https://doi.org/10.1038/s41598-020-59083-3

    Article  ADS  Google Scholar 

  4. Li, C., Poplawsky, J., Wu, Y., Lupini, A.R., Mouti, A., Leonard, D.N., Paudel, N., Jones, K., Yin, W., Al-Jassim, M., Yan, Y., and Pennycook, S.J., From atomic structure to photovoltaic properties in CdTe solar cells, Ultramicroscopy, 2013, vol. 134, pp. 113–125. https://doi.org/10.1016/j.ultramic.2013.06.010

    Article  Google Scholar 

  5. Tomaka, G., Grendysa, J., Śliż, P., Becker, C.R., Polit, J., Wojnarowska, R., Stadler, A., and Sheregii, E.M., High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction, Phys. Rev. B., 2016, vol. 93, no. 20, p. 205419. https://doi.org/10.1103/PhysRevB.93.205419

  6. Mynbaev, K.D., Bazhenov, N.L., Dvoretsky, S.A., Mikhailov, N.N., Varavin, V.S., Marin, D.V., and Yakushev, M.V., Photoluminescence of molecular beam epitaxy-grown mercury cadmium telluride: comparison of HgCdTe/GaAs and HgCdTe/Si technologies, J. Electron. Mater., 2018, vol. 47, no. 8, pp. 4731–4736. https://doi.org/10.1007/s11664-018-6364-9

    Article  ADS  Google Scholar 

  7. Varavin, V.S., Marin, D.V., Shefer, D.A., and Yakushev, M.V., Electrical properties of the Hg0.7Cd0.3Te films grown by MBE method on Si(0 1 3) substrates, Infrared Phys. Technol., 2018, vol. 94, pp. 11–15. https://doi.org/10.1016/j.infrared.2018.06.009

    Article  ADS  Google Scholar 

  8. Yakushev, M.V., Brunev, D.V., Varavin, V.S., Vasilyev, V.V., Dvoretskii, S.A., Marchishin, I.V., Predein, A.V., Sabinina, I.V., Sidorov, Yu.G., and Sorochkin, A.V., HgCdTe heterostructures on Si(310) substrates for midinfrared focal plane arrays, Semiconductors, 2011, vol. 45, no. 3, pp. 385–391. https://doi.org/10.1134/S1063782611030250

    Article  ADS  Google Scholar 

  9. Hildebrandt, S., Uniewski, H., Schreiber, J., and Leipner, H.S., Localization of Y luminescence at glide dislocations in cadmium telluride, J. Phys. III, 1997, vol. 7, no. 7, pp. 1505–1514. https://doi.org/10.1051/jp3:1997203

    Article  Google Scholar 

  10. Krivobok, V.S., Chentsov, S.I., Nikolaev, S.N., Chernopitssky, M.A., Onishchenko, E.E., Pruchkina, A.A., Martovitskiy, V.P., Bagaev, V.S., Ikusov, D.G., Marin, D.V., Mikhailov, N.N., and Yakushev, M.V., Optical probing of extended defects in CdTe virtual substrates via isolated emitters produced by weakly perturbed fragments of partial dislocations, Appl. Phys. Lett., 2019, vol. 115, no. 23, p. 232102. https://doi.org/10.1063/1.5127259

  11. Krivobok, V.S., Nikolaev, S.N., Bagaev, V.S., Onishchenko, E.E., Chentsov, S.I., Chernopitssky, M.A., and Sharkov, A.I., Observation of phase transitions in an electron-hole system associated with dislocation cores in cadmium telluride, Bull. Lebedev Phys. Inst., 2020, vol. 47, no. 4, pp. 123–126. https://doi.org/10.3103/S106833562004003X

    Article  ADS  Google Scholar 

  12. Dean, P.J., Comparison of MOCVD-grown with conventional II–VI materials parameters for EL thin films, Phys. Stat. Sol. A, 1984, vol. 81, no. 2, pp. 625–646. https://doi.org/10.1002/pssa.2210810225

    Article  ADS  Google Scholar 

  13. Kweon, K.E., Åberg, D., and Lordi, V., First-principles study of atomic and electronic structures of 60° perfect and 30°/90° partial glide dislocations in CdTe, Phys. Rev. B., 2016, vol. 93, no. 17, p. 174109. https://doi.org/10.1103/PhysRevB.93.174109

Download references

ACKNOWLEDGMENTS

The authors are grateful to the team of technologists of the Institute of Physico-Technical Problems, Siberian Branch of the Russian Academy of Science, for the samples put at their disposal.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-32-90176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Chentsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chentsov, S.I., Krivobok, V.S., Nikolaev, S.N. et al. Target Laser Exposure of Partial CdTe/Si Dislocations at Low Temperature. Bull. Lebedev Phys. Inst. 49, 99–103 (2022). https://doi.org/10.3103/S1068335622040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622040029

Keywords:

Navigation