Skip to main content
Log in

EXISTENCE CONDITIONS FOR ONE-ELECTRON STATES IN SEMICONDUCTOR QUANTUM RINGS

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

It is found that one-electron states in thin semiconductor quantum rings based on semiconductor heterostructures satisfy special selection rules associated with the presence of two nonequivalent heteroboundaries. It is shown that the existence of a single stable one-electron level in the ring with preliminarily chosen characteristics (for a given heterostructure) can be achieved by selecting outer and inner ring radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kopiev, Zh. I. Alferov, and D. Bimberg, “Quantum Dot Heterostructures: Fabrication, Properties, Lasers (Review),” Semiconductors 32, 343 (1998). https://doi.org/10.1134/1.1187396

    Article  ADS  Google Scholar 

  2. S. Viefers, P. Koskinen, P. S. Deo, and M. Manninen, “Quantum Rings for Beginners: Energy Spectra and Persistent Currents,” Physica E 21, 1 (2004). https://doi.org/10.1016/j.physe.2003.08.076

    Article  ADS  Google Scholar 

  3. M. Manninen, S. Viefers, and S. M. Reimann, “Quantum Rings for Beginners II: Bosons Versus Fermions,” Physica E 46, 119 (2012). https://doi.org/10.1016/j.physe.2012.09.013

    Article  ADS  Google Scholar 

  4. M. Kammermeier, A. Seith, P. Wenk, and J. Schliemann, “Persistent Spin Textures and Currents in Wurtzite Nanowire-Based Quantum Structures,” arXiv: 2001.06571v2 8 May 2020 [cond-mat.mes-hall]. https://doi.org/10.1103/PhysRevB.101.195418 (2020); https://arxiv.org/pdf/2001.06571.pdf

  5. B. Li, W. Magnus, and F. M. Peeters, “Tunable Exciton Aharonov—Bohm Effect in a Quantum Ring,” J. Phys.: Conf. Ser. 210, (2010); in 11th International Conference on Optics of Excitons in Confined Systems (OECS11) Madrid, 2009. https://iopscience.iop.org/article/10.1088/1742-6596/210/1/012030/meta

  6. N. T. Bagraev, A. D. Buravlev, V. K. Ivanov, L. E. Klyachkin, A. M. Malyarenko, S. A. Rykov, and I. A. Shelich, “Charge Carrier Interference in One-Dimensional Semiconductor Rings,” Semiconductors 34, 817 (2000). https://doi.org/10.1134/1.1188081

    Article  ADS  Google Scholar 

  7. J. M. Lia and P. I. Tamborenea, “Narrow Quantum Rings with General Rashba and Dresselhaus Spin—Orbit Interaction,” Physica E 126, 114419 (2020). https://www.x-mol.com/paperRedirect/1304098545937387520https://doi.org/10.1016/j.physe.2020.114419

    Article  Google Scholar 

  8. P.-F. Loos and P. Gill, “Exact Wave Function of Two-Electron Quantum Rings,” Phys. Rev. Lett. 108, 083002 (2012). https://doi.org/10.1103/physrevlett.108.083002

    Article  ADS  Google Scholar 

  9. V. K. Kozin, I. V. Iorsh, O. V. Kibis, and I. A. Shelukh, “Periodic Array of Quantum Rings Strongly Coupled to Circularly Polarized Light as a Topological Insulator,” Phys. Rev. B 97, 035416 (2018). https://doi.org/10.1103/PhysRevB.97.035416

    Article  ADS  Google Scholar 

  10. A. O. Govorov, A. V. Chaplik, L. Wendler, and V. M. Fomin, “Does the Persistent Current in a Quantum Loop Depend on an Electron—Electron Interaction?” JEPT Lett. 60, 643 (1994). http://www.jetpletters.ac.ru/cgi-bin/articles/download.cgi/1351/article_20409.pdf

  11. W.-C. Tan and J. Inkson, “Electron States in a Two-Dimensional Ring – an Exactly Soluble Model,” Semicond. Sci. Technol. 11, 1635 (1996). https://doi.org/10.1088/0268-1242/11/11/001

    Article  ADS  Google Scholar 

  12. E. Zipper, M. Kurpas, J. Sadowski. and M. Maska, “Semiconductor Quantum Rings as a Solid-State Spin Qubit,” arXiv:1011.2540v1. [cond-mat.mes-hall]; https://www.academia.edu/34947381/Semiconductor_quantum_ring_as_a_solid_state_spin_qubit

  13. J. Hubbard, “Electron Correlations in Narrow Energy Bands,” Proc. Roy. Soc. London A 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204

    Article  ADS  Google Scholar 

  14. A. I. Baz, J. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Translations, Jerusalem, 1969). https://archive.org/details/nasa_techdoc_19690016470 (NASA TT F-510)

  15. A. M. Mandel’, V. S. Oshurko, G. I. Solomakho, and K. G. Solomakho, “Ideal Quantum Wires in Magnetic Fields: Self-Organization Energy, Critical Sizes and Controllable Conductivity,” J. Commun. Technol. Electron. 63, 245 (2018). https://doi.org/10.1134/S1064226918030129

    Article  Google Scholar 

  16. A. M. Mandel’, V. B. Oshurko, S. M. Pershin, S. G. Veselko, E. E. Karpova, A. A. Scharts and P. V. Aristarkhov, “Effect of Size Quantization Subband Crossing in Thin Quantum Wires,” Bull. Lebedev Phys. Inst. 47, 296 (2020). https://doi.org/10.3103/S1068335620100073

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mandel.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandel, A.M., Oshurko, V.B., Pershin, S.M. et al. EXISTENCE CONDITIONS FOR ONE-ELECTRON STATES IN SEMICONDUCTOR QUANTUM RINGS. Bull. Lebedev Phys. Inst. 48, 68–71 (2021). https://doi.org/10.3103/S1068335621030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335621030064

Keywords:

Navigation