Skip to main content
Log in

Aluminum-Matrix Natural Composite Material Based on the Al–Ca–Ni–La–Fe System

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The primary crystallization concentration region of the aluminum solid solution (Al) is refined using computational analysis in the Thermo-Calc program, including the construction of liquidus surfaces and polythermal sections of the Al–Ca–Ni–La–Fe system, as well as experimental microstructural analysis using scanning electron microscopy. This region can be considered promising for the formation of new aluminum-matrix natural eutectic-type composite materials containing above 20 vol % of intermetallic particles in the structure. The investigation into the microstructure of a promising composition with the formula, wt %, Al–4Ca–2Ni–1La–0.6Fe revealed that it contains up to 23 vol % of Al4Ca and Al9FeNi intermetallic phases of a eutectic nature according to the calculation. Separate crystals of these phases in the eutectic composition have submicron sizes, notably, a length of 250–400 nm and a thickness of 100–200 nm. It is also established that no formation of the Al4La intermetallic phase predicted by the thermodynamic calculation is observed, while lanthanum itself is completely dissolved in the Al4Ca calcium-containing phase. An analysis of the microstructure and hardness during stepped annealing has shown that codoping of the Al–4Ca–2Ni–1La–0.6Fe alloy by zirconium and scandium (0.2% Zr and 0.1% Sc) leads to precipitation hardening due to the decomposition of the (Al) solid solution and further formation of coherent nanoparticles of the L12 phase—Al3(Zr, Sc) up to 20 nm in size. The results of studying the mechanical properties under uniaxial tension testing of cylindrical castings of the Al–4Ca–2Ni–1La–0.6Fe–0.2Zr–0.1Sc alloy show a relatively high level of strength characteristics (σв of 265 MPa and σ0.2 of 177 MPa) with the conservation of the elongation acceptable for the composite material (~2%). Thus, it is shown based on these results that the Al–Ca–Ni–La–Fe system is promising for the fabrication of new aluminum-matrix natural composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Polmear, I.J., Light Metals: From Traditional Alloys to Nanocrystals, Elsevier, 2005, 4th ed.

    Book  Google Scholar 

  2. Amouri, K., Kazemi, Sh., Momeni, A., and Kazazi, M., Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique, Mater. Sci. Eng. A, 2016, vol. 674, pp. 569–578.

    Article  CAS  Google Scholar 

  3. Jianke Liu and Chuxuan Liang, Microstructure characterization and mechanical properties of bulk nanocrystalline aluminium prepared by SPS and followed by hightemperature extruded techniques, Mater. Lett., 2017, vol. 206, pp. 95–99.

    Article  CAS  Google Scholar 

  4. Mobasherpour, I., Tofigh, A.A., and Ebrahimi, M., Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying, Mater. Chem. Phys., 2013, vol. 138, pp. 535–541.

    Article  CAS  Google Scholar 

  5. Yang Xue, Rujuan Shen, Song Ni, Min Song, and Daihong Xiao, Fabrication, microstructure and mechanical properties of Al–Fe intermetallic particle reinforced Al-based composites, J. Alloy Compd., 2015, vol. 618, pp. 537–544.

    Article  CAS  Google Scholar 

  6. Chaubey, A.K., Scudino, S., and Mukhopadhyay, N.K., Samadi Khoshkhoo M., Mishrac, B.K., and Eckerta, J., Effect of particle dispersion on the mechanical behavior of Al-based metal matrix composites reinforced with nanocrystalline Al–Ca intermetallics, J. Alloy Compd., 2012, vol. 536, pp. 134–137.

    Article  Google Scholar 

  7. Belov, N.A., Naumova, E.A., and Eskin, D.G., Casting alloys of the Al–Ce–Ni system: Microstructural approach to alloy design, Mater. Sci. Eng. A, 1999, vol. 271, pp. 134–142.

    Article  Google Scholar 

  8. Kakitani, R., Reyes, R.V., Garcia, A., Spinelli, J.E., and Cheung, N., Relationship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al Ni eutectic alloy, J. Alloy Compd., 2018, vol. 733, pp. 59–68.

    Article  CAS  Google Scholar 

  9. Yurong Jiang, Xi Shi, Xiaoheng Bao, Ye He, Shuaixiong Huang, Di Wu, Weimin Bai, Libin Liu, and Ligang Zhang, Experimental investigation and thermodynamic assessment of Al–Ca–Ni ternary system, J. Mater. Sci., 2017, vol. 52, pp. 12409–12426.

    Article  CAS  Google Scholar 

  10. Ratke, L. and Alkemper, J., Ordering of the fibrous eutectic microstructure of Al–Al3Ni due to accelerated solidification conditions, Acta Mater., 2000, vol. 48, pp. 1939–1948.

    Article  CAS  Google Scholar 

  11. Xi Li, Yves Fautrelle, Zhongming Ren, Yudong Zhang, and Claude Esling, Effect of a high magnetic field on the Al–Al3Ni fiber eutectic during directional solidification, Acta Mater., 2010, vol. 58, pp. 2430–2441.

    Article  CAS  Google Scholar 

  12. Kashyap, S., Tiwary, C.S., and Chattopadhyay, K., Microstructure and mechanical properties of oxidation resistant suction cast Nb–Si–Al alloy, Mater. Sci. Eng. A, 2013, vol. 559, pp. 74–85.

    Article  CAS  Google Scholar 

  13. Tiwary, C.S., Kashyap, S., Kim, D.H., and Chattopadhyay, K., Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength, Mater. Sci. Eng. A, 2015, vol. 639, pp. 359–369.

    Article  CAS  Google Scholar 

  14. Akopyan, T.K., Belov, N.A., Naumova, E.A., and Letyagin, N.V., New in-situ Al matrix composites based on Al–Ni–La eutectic, Mater. Lett., 2019, vol. 245, pp. 110–113.

    Article  CAS  Google Scholar 

  15. Belov, N.A., Naumova, E.A., Alabin, A.N., and Matveeva, I.A., Effect of scandium on structure and hardening of Al–Ca eutectic alloys, J. Alloy Compd., 2015, vol. 646, pp. 741–747.

    Article  CAS  Google Scholar 

  16. Belov, N.A., Naumova, E.A., Akopyan, T.K., and Doroshenko, V.V., Phase diagram of the Al–Ca–Fe–Si system and its application for the design of aluminum matrix composites, JOM, 2018, vol. 70, pp. 2710–2715.

    Article  CAS  Google Scholar 

  17. Bacaicoa, I., Wicke, M., Luetje, M., Zeismann, F., Brueckner-Foit, A., Geisert, A., and Fehlbier, M., Characterization of casting defects in a Fe-rich Al–Si–Cu alloy by microtomography and finite element analysis, Eng. Fract. Mech., 2017, vol. 183, pp. 159–169.

    Article  Google Scholar 

  18. Ma, Z., Samuel, A.M., Doty, H.W., Valtierra, S., and Samuel, F.H., Effect of Fe content on the fracture behaviour of Al–Si–Cu cast alloys, Mater. Des., 2014, vol. 57, pp. 366–373.

    Article  CAS  Google Scholar 

  19. Puncreobutr, C., Lee, P.D., Kareh, K.M., Connolley, T., Fife, J.L., and Phillion, A.B., Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys, Acta Mater., 2014, vol. 68, pp. 42–51.

    Article  CAS  Google Scholar 

  20. Shurkin, P.K., Dolbachev, A.P., Naumova, E.A., and Doroshenko, V.V., Effect of iron on the structure, hardening and physical properties of the alloys of the Al–Zn–Mg–Ca system, Tsvet. Met., 2018, no. 5, pp. 69–77.

  21. Shurkin, P.K., Belov, N.A., Akopyan, T.K., Alabin, A.N., Aleshchenko, A.S., and Avxentieva, N.N., Formation of the structure of thin-sheet rolled product from a high-strength sparingly alloyed aluminum alloy “nikalin”, Phys. Met. Metallogr., 2017, vol. 118, no. 9, pp. 896–904.

    Article  CAS  Google Scholar 

  22. Belov, N.A., Naumova, E.A., Doroshenko, V.V., and Avksent’eva, N.N., Combined effect of calcium and silicon on the phase composition and structure of Al–10%Mg alloy, Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 1, pp. 67–75.

    Article  Google Scholar 

  23. Mann, V.Kh., Alabin, A.N., Krokhin, A.Yu., Frolov, A.V., and Belov, N.A., New generation of high strength aluminum casting alloys, Light Metal Age, 2015, vol. 73, no. 5, pp. 44–47.

    Google Scholar 

  24. Knipling, K.E., Karnesky, R.A., Lee, C.P., Dunand, D.C., and Seidman, D.N., Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal ageing, Acta Mater., 2010, vol. 58, pp. 5184–5195.

    Article  CAS  Google Scholar 

  25. Clouet, E., Barbu, A., Lae, L. and, Martin, G., Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics, Acta Mater., 2005, vol. 53, pp. 2313–2325.

    Article  CAS  Google Scholar 

  26. Zhou, W.W., Cai, B., Li,W.J., Liu,Z.X., and Yang, S., Heat-resistant Al–0.2Sc–0.04Zr electrical conductor, Mater. Sci. Eng. A, 2012, vol. 552, pp. 353–358.

    Article  CAS  Google Scholar 

  27. Booth-Morrison, C., Mao, Z., Diaz, M., Dunand, D.C., Wolverton, C., and Seidman, D.N., Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al–Sc–Zr alloys, Acta Mater., 2012, vol. 60, no. 12, pp. 4740–4752.

    Article  CAS  Google Scholar 

  28. Sumiha Ikeshita, Ansis Strodahs, and Zineb Saghi, Hardness and microstructural variation of Al–Mg–Mn–Sc–Zr alloy, Micron, 2016, vol. 82, pp. 1–8.

    Article  CAS  Google Scholar 

  29. Lefebvre, W., Danoix, F., Hallem, H., Forbord, B., Bostel, A., and Marthinsen, K., Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium, J. Alloys Compd., 2009, vol. 470, pp. 107–110.

    Article  CAS  Google Scholar 

  30. Belov, N.A., Batyshev, K.A., and Doroshenko, V.V., Microstructure and phase composition of the eutectic Al–Ca alloy, additionally alloyed with small additives of zirconium, scandium and manganese, Non-Ferrous Met., 2017, vol. 43, no. 2, pp. 49–54.

    Article  Google Scholar 

  31. Belov, N.A., Alabin, A.N., and Eskin, D.G., Improving the properties of cold rolled Al–6%Ni sheets by alloying and heat treatment, Scripta Mater., 2004, vol. 50, pp. 89–94.

    Article  CAS  Google Scholar 

  32. Naumova, E.A., Akopyan, T.K., Letyagin, N.V., and Vasina, M.A., Investigation of the structure and properties of eutectic alloys of the Al–Ca–Ni system containing REM, Non-Ferrous Met., 2018, no. 2, pp. 25–30.

  33. Glazoff, M.V., Khvan, A.V., Zolotorevsky, V.S., Belov, N.A., and Dinsdale, A.T., Casting Aluminum Alloys. Their Physical and Mechanical Metallurgy, Oxford: Elsevier, 2019.

    Google Scholar 

  34. Belov, N.A., Fazovyi sostav promyshlennykh i perspectivnykh aluminievykh splavov (Phase Composition of Industrial and Prospective Aluminum Alloys), Moscow: MISiS, 2010.

  35. Deev, V.B., Prusov, E.S., and Kutsenko, A.I., Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods, Metal. Ital., 2018, no. 2, pp. 16–24.

  36. Deev, V.B., Ponomareva, K.V., Prikhodko, O.G., and Smetanyuk, S.V., Influence of temperatures of melt overheating and pouring on the quality of aluminum alloy lost foam castings, Russ. J. Non-Ferrous Met., 2017, vol. 58, no.4, pp. 373–377.

    Article  Google Scholar 

  37. Belov, N.A., Belov, V.D, and Savchenko, S.V., Porshnevye siluminy (Piston silumins), Moscow: Ruda i Metally, 2011.

  38. Belov, N.A., Alabin, A.N., Eskin, D.G., and Istomin-Kastrovskiy, V.V., Optimization of hardening of Al–Zr–Sc casting alloys, J. Mater. Sci., 2006, vol. 41, pp. 5890–5899

    Article  CAS  Google Scholar 

  39. Deschamp, A. and Guyo, P., In situ small-angle scattering study of the precipitation kinetics in an Al–Zr–Sc alloy, Acta Mater., 2007, vol. 55, pp. 2775–2783.

    Article  Google Scholar 

  40. Van Dalen, M.E., Gyger, T., Dunand, D.C., and Seidman, D.N., Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys, Acta Mater., 2011, vol. 59, pp. 7615–7626.

    Article  CAS  Google Scholar 

  41. Lefebvre, W., Danoix, F., Hallem, H., Forbord, B., Bostel, A., and Marthinsen, K., Precipitation kinetic of Al3(Sc, Zr) dispersoids in aluminium, J. Alloys Compd., 2009, vol. 470, pp. 107–110.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-79-00345.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. K. Akopyan, N. V. Letyagin or M. E. Samoshina.

Ethics declarations

The authors claim that they have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akopyan, T.K., Letyagin, N.V. & Samoshina, M.E. Aluminum-Matrix Natural Composite Material Based on the Al–Ca–Ni–La–Fe System. Russ. J. Non-ferrous Metals 60, 531–541 (2019). https://doi.org/10.3103/S106782121905002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782121905002X

Keywords:

Navigation