Skip to main content
Log in

Developmental Prospects of the Methods for Synthesizing Titanates of the Perovskite-Type Structure and Their Doping with Rare-Earth Elements

  • METALLURGY OF RARE AND NOBLE METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A review of methods for fabricating titanates of a perovskite-type structure and their doping with rare-earth elements is presented. The results of the scientific research of authors from different countries related to the study of the effect of doping titanates of the perovskite structure by rare-earth elements on their electromagnetic properties are discussed. The content of the work also includes information on the use of titanates of the perovskite-type structure in various industries. A comparative analysis of some morphological properties (particle size and structure) and electromagnetic characteristics (dielectric constant, Curie temperature, and modulus of longitudinal oscillations (d33)) of powders fabricated (and doped) by different methods is carried out by the example of barium titanate (BaTiO3). Procedures for fabricating BaTiO3 by various methods, such as solvothermal, hydrothermal, sol–gel, chemical deposition, and solid-phase sintering, are described. The results of studying the influence of the variation in process parameters (temperature, pH, composition of the initial mixture of materials, and concentration of reagents) on the phase, morphology, and formation rate of BaTiO3 particles during the hydrothermal synthesis (with the use of BaCl2, TiCl4, and NaOH as initial materials) are presented. The experiments on studying the influence of the microwave-radiation power during the solid-phase sintering of BaCO3 and TiO2 on dielectric and ferroelectric properties of BaTiO3 are also presented. An analysis of fabrication methods of BaTiO3 and its doping by rare-earth elements results in the statement that the hydrothermal method and solid-phase sintering, including the application of the microwave radiation, are currently the most promising fabrication technologies of materials with the perovskite-type structure with specified properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Dogan, Fatih, Lin, Hong, Guilloux-Viry, Maryline, and Peña, Octavio, Focus on properties and applications of perovskites, Sci. Technol. Adv. Mater., 2015, vol. 16, no. 2. https://doi.org/10.1088/1468-6996/16/2/020301.

  2. Artini, C., Crystal chemistry, stability and properties of interlanthanide perovskites: A review, J. Eur. Ceram. Soc., 2016, vol. 37, no. 2, pp. 427–440. https://doi.org/10.1016/j.jeurceramsoc.2016.08.041.

    Article  Google Scholar 

  3. Wei, T., Liu, H.P., Chen, Y.F., Yan, H.Y., and Liu, J.-M., Preparation, magnetic characterization, and optical band gap of EuTiO3 nanoparticles, Appl. Surf. Sci., 2011, vol. 257, no. 2, pp. 4505–4509. https://doi.org/10.1016/j.apsusc.2010.12.112.

    Article  Google Scholar 

  4. Oliveira, Larissa H., Savioli, de Moura, Julia Ana P., Nogueira, Icamira C., Li, Maximo S., Longo, Elson, Varela, Jose A., and Rosa, Ieda L.V., Investigation of structural and optical properties of CaTiO3 powders doped with Mg2+ and Eu3+ ions, J. Alloys Compd., 2015, vol. 647, pp. 265–275. https://doi.org/10.1016/j.jallcom.2015.05.226.

    Article  Google Scholar 

  5. Sankovich, A.M., The mechanism of formation, thermal stability, and thermodynamic properties of cationically ordered perovskite-like layered oxides ALnTiO4 and A2Ln2Ti3O10 (A = Na, K, Ln = Nd, Gd)], Extended Abstract of Cand. Sci. Dissertation, St. Petersburg: St. Petersburg Gos. Univ., 2012.

  6. Kravtseva, M.S., Synthesis and properties of thin epitaxial BiFeO3 films and solid solutions based on it, Extended Abstract of Cand. Sci. Dissertation, Moscow: Mos. Gos. Univ., 2008.

  7. New MLCC technology for the production of large-size ceramic capacitors. http://kit-e.ru/assets/files/pdf/2009_06_12.pdf (accessed June 20, 2017).

  8. Gridnev, S.A., Electrical properties of semiconductor ceramics based on barium titanate, Vestn. Voronezh. Gos. Tekh. Univ., 2012, vol. 8, no. 11, pp. 57–61.

  9. Vijatovic Petrovic, M.M., Grigalaitis, R., Ilic, N., Bobic, J.D., Dzunuzovic, A., Banys, J., and Stojanovic, B.D., Interdependence between structure and electrical characteristics in Sm-doped barium titanate, J. Alloys Compd., 2017, vol. 724, pp. 959–968. https://doi.org/10.1016/j.jallcom.2017.07.099

    Article  Google Scholar 

  10. Anaraki, S., Thin-film capacitor based on strontium titanate formed by the sol–gel method, Mikroelektronika, 2015, vol. 44, no. 6, pp. 476–480.

    Google Scholar 

  11. Tkach, Alexander, Amaral, Joao S., Amaral, Vitor S., and Vilarinho, Paula M., Dielectric spectroscopy and magnetometry investigation of Gd-doped strontium titanate ceramics. J. Eur. Ceram. Soc., 2017, vol. 37, no. 6, June, pp. 2391–2397. https://doi.org/10.1016/j.jeurceramsoc.2017.02.011

    Article  Google Scholar 

  12. Tkach, Alexander, Amaral, Joao S., Zlotnik, Sebastian, Amaral, Vitor S., and Vilarinho, Paula M., Enhancement of the dielectric permittivity and magnetic properties of Dy substituted strontium titanate ceramics, J. Alloys Compd.. https://doi.org/10.1016/j.jeurceramsoc.2017.09.007

  13. Electrical Properties of Un-Doped and Doped EuTiO3-Based Perovskites. http://etheses.whiterose.ac.uk/4064/1/University_of_Sheffield_-final_thesis-1.pdf (accessed June 24, 2017).

  14. Daqing Wei, Yu Zhou, Dechang Jia, and Yaming Wang, Formation of CaTiO3/TiO2 composite coating on titanium alloy for biomedical applications, J. Biomed. Mater. Res., 2008, vol. 84B, no. 2, pp. 444–451. https://doi.org/10.1002/jbm.b.30890

    Article  Google Scholar 

  15. Manso, Miguel, Langlet, Michel, and Martinez-Duart, J.M., Testing sol–gel CaTiO3 coatings for biocompatible applications, Mater. Sci. Eng., 2003, vol. 23, no. 3, pp. 447–450. https://doi.org/10.1016/S0928-4931(02)00319-3

  16. Better than silicon. http://spkurdyumov.ru/uploads//2015/08/luchshe-kremniya.pdf (accessed June 23, 2017).

  17. Sahoo, Subhanarayan, Parashar, S.K.S., and Ali, S.M., CaTiO3 nano ceramic for NTCR thermistor based sensor application, J. Adv. Ceram., 2014, vol. 3, no. 2, pp. 117–124. https://doi.org/10.1007/s40145-014-0100-6

    Article  Google Scholar 

  18. Bekman, I.N. et al, Emanation-thermal analysis of perovskite, Radiokhimiya, 2004, vol. 46, no. 3, pp. 272–279.

    Google Scholar 

  19. Paris, E.C., Espinosa, J.W.M., de Lazaro, S., Lima, R.C., Joya, M.R., Pizani, P.S., Leite, E.R., Souza, A.G., Varela, J.A., and Longo, E., Er3+ as marker for order–disorder determination in the PbTiO3 system, Chem. Phys., 2017, vol. 335, pp. 7–14. https://doi.org/10.1016/j.chemphys.2007.03.019

    Article  Google Scholar 

  20. Zhu, J. and Thomas, A., Perovskite-type mixed oxides as catalytic material for NO removal. Appl. Catal. B: Environ., 2009, vol. 92, nos. 3–4, pp. 225–233. https://doi.org/10.1016/j.apcatb.2009.08.008

  21. Zhu, J. and Chen, J., Perovskite-Type Oxides: Synthesis and Application in Catalysis. https://www.novapublishers.com/catalog/product_info.php?products_id=23377 (accessed June 25, 2017).

  22. Yanhua Zong, Kazuma Kugimiya, Koji Fujita, Hirofumi Akamatsu, Kazuyuki Hirao, and Katsuhisa Tanaka, Preparation and magnetic properties of amorphous EuTiO3 thin films, J. Non-Cryst. Solids, 2010, vol. 356, pp. 2389–2392. https://doi.org/10.1016/j.jnoncrysol.2010.05.014.

    Article  Google Scholar 

  23. Fengfeng Chi, Yanguang Qin, Shaoshuai Zhou, Xiantao Wei, Yonghu Chen, Changkui Duan, and Min Yin, Eu3+-site occupation in CaTiO3 perovskite material at low temperature, Current Appl. Phys., 2017, vol. 17, no. 1, pp. 24–30. https://doi.org/10.1016/j.cap.2016.10.018

    Article  Google Scholar 

  24. Tatiana Martelli Mazzo, Ivo Mateus Pinatti, Leilane Roberta Macario, Waldir Avansi Junior, Mario Lucio Moreira, Ieda Lucia Viana Rosa, Valmor Roberto Mastelaro, Jose Arana Varela, and Elson Longo, Europium-doped calcium titanate: Optical and structural evaluations, J. Alloys Compd., 2014, vol. 585, pp. 154–162. https://doi.org/10.1016/j.jallcom.2013.08.174

    Article  Google Scholar 

  25. Moreira, Mario L., Paris, Elaine C., do Nascimento, Gabriela S., Longo, Valeria M., Sambrano, Julio R., Mastelaro, Valmor R., Bernardi, Maria I.B., Andres, Juan, Varela, Jose A., and Longo, Elson, Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight, Acta Mater., 2009, vol. 57. no. 17, pp. 5174–5185. https://doi.org/10.1016/j.actamat.2009.07.019

    Article  Google Scholar 

  26. Rath, M.K., Pradhan, G.K., Pandey, B., Verma, H.C., Roul, B.K., and Anand, S., Synthesis, characterization and dielectric properties of europium-doped barium titanate nanopowders, Mater. Lett., 2008, vol. 62, pp. 2136–2139. https://doi.org/10.1016/j.matlet.2007.11.033.

    Article  Google Scholar 

  27. Sitko, D., Garbarz-Glos, B., Piekarczyk, W., Smiga, W., and Antonova, M., The effects of the additive of Eu ions on elastic and electric properties of BaTiO3 ceramics. Int. Ferroel., 2016, vol. 173, no. 1, pp. 31–37. https://doi.org/10.1080/10584587.2016.1183413.

    Article  Google Scholar 

  28. Geetha, P., Sarita, P., and Krishna Rao, D., Synthesis, structure, properties and applications of barium titanate nanoparticles. Int. J. Adv. Tech. Eng. Sci., 2016, vol. 4, spec. no. 01, pp. 178–187.

  29. Shen Zhigang, Zhang Weiwei, Chen Jianfeng, and Jimmy Yun Low, Temperature one step synthesis of barium titanate: particle formation mechanism and large-scale synthesis, Chin. J. Chem. Eng., 2006, vol. 14, no. 5, pp. 642–648. https://doi.org/10.1016/S1004-9541(06)60128-6

    Article  Google Scholar 

  30. Liqiu Wang, Liang Liu, Dongfeng Xue, Hongmin Kang, and Changhou Liu, Wet routes of high purity BaTiO3 nanopowders, J. Alloys Compd., 2007, vol. 440 pp. 78–83. https://doi.org/10.1016/j.jallcom.2006.09.023

    Article  Google Scholar 

  31. Baorang Li, Xiaohui Wang, and Longtu Li, Synthesis and sintering behavior of BaTiO3 prepared by different chemical methods, Mater. Chem. Phys. 2002, vol. 78, pp. 292–298. https://doi.org/10.1016/S0254-0584(02)00351-6

    Article  Google Scholar 

  32. V. Raghavendra Reddy, Sanjay Kumar Upadhyay, Ajay Gupta, Anand M. Awasthi, and Shamima Hussain, Enhanced dielectric and ferroelectric properties of BaTiO3 ceramics prepared by microwave assisted radiant hybrid sintering, Ceram. Int., 2014, vol. 40, no. 6, pp. 8333–8339. https://doi.org/10.1016/j.ceramint.2014.01.039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Cherepov, A. N. Kropachev or O. N. Budin.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepov, V.V., Kropachev, A.N. & Budin, O.N. Developmental Prospects of the Methods for Synthesizing Titanates of the Perovskite-Type Structure and Their Doping with Rare-Earth Elements. Russ. J. Non-ferrous Metals 60, 18–26 (2019). https://doi.org/10.3103/S1067821219010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821219010024

Keywords:

Navigation