Skip to main content
Log in

Experimental Study of Combustion Synthesis in Air of ZrB2-Mullite Composite from Different Zirconium Silicate Sources

  • Self-Propagating High-Temperature Synthesis
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

ZrB2-mullite composite was synthesized by combustion synthesis (CS) from two different reactant systems: commercial ZrSiO4-B2O3-Al, and zircon sand (mineral tailing)-B2O3-Al. The reactant mixture was activated by high-energy ball milling for 2 hours. The reaction was carried out under an air atmosphere and initiated with an oxy-acetylene flame. The standard Gibbs energy minimization method was used to calculate the equilibrium composition of the reacting species. The effects of different starting materials on the resulting combustion products were investigated and discussed. The as-synthesized products were characterized by X-Ray diffraction (XRD) and scanning electron microscope (SEM) coupled with energy dispersive X-Ray (EDS) detector. Examination of the self-propagated velocity showed that the reactivity was marginally higher when using commercial ZrSiO4. The results also showed that both reactant systems successfully produced ZrB2-mullite composite by the combustion reaction but that the commercial ZrSiO4-B2O3-Al reactants system exhibited fewer undesirable phases than zircon sand-B2O3-Al due to a better conversion of the reactants into combustion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez, J., Rodriguez, A., Monteverde, F., Melandri, C., and Portu, G.de., Characterisation and high temperature mechanical properties of zirconium boride based materials, J. Euro. Ceram. Soc., 2002, vol. 22, nos. 14–15, pp. 2543–2549. doi 10.1016/S0955- 2219(02)00114-0

    Article  Google Scholar 

  2. Setoudeh, N., and Welham, N., Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg, J. Alloys. Compd., 2006, vol. 420, nos. 1–2, pp. 225–228. doi 10.1016/j.jallcom.2005.07.083

    Article  Google Scholar 

  3. Khanra, A., Pathak, L., and Godkhindi, M., Double SHS of ZrB2 powder, J. Mater. Process. Technol., 2008, vol. 202, no. 1–3, pp. 386–390. doi 10.1016/j.jmatprotec. 2007.09.007

    Article  Google Scholar 

  4. Sonber, J., Murthy, T., Subramanian, C., Hubli, R., and Suri, A., Effect of EuB6 addition on densification and properties of ZrB2, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 96–101. doi 10.1016/j.ijrmhm.2011.10.001

    Article  Google Scholar 

  5. Arish, D., Shiju, C., Joseyphus, R., and Pushparajan, J., Synthesis of ZrB2–SiC ceramic composite from a single–source precursor, Mater. Chem. Phys., 2017, vol. 194, pp. 308–312. doi 10.1016/j.matchemphys.2017.03.055

    Article  Google Scholar 

  6. Akgun, B., Camurlu, H., Topkaya, Y., and Sevinc, N., Mechanochemical and volume combustion synthesis of ZrB2, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 601–607. doi 10.1016/j.ijrmhm.2011.04.005

    Article  Google Scholar 

  7. Sonber, J., Murthy, T., Subramanian, C., Kumar, S., Fotedar, R., and Suri, A., Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 21–30. doi 10.1016/j.ijrmhm.2010.06.007

    Article  Google Scholar 

  8. Qiu, H., Guo, W., Zou, J., and Zhang, G., ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: The effects of carbon source and reaction atmosphere, Powder Technol., 2012, vol. 217, pp. 462–466. doi 10.1016/j.powtec.2011.11.002

    Article  Google Scholar 

  9. Hu, Q., Luo, P., Zhang, M., Song, M., and Li, J., Combustion and formation behavior of hybrid ZrB2 and ZrC particles in Al–Zr–B4C system during selfpropagation high temperature synthesis, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 89–95. doi 10.1016/j.ijrmhm.2011.09.011

    Article  Google Scholar 

  10. Tsuchida, T., and Yamamoto, S., MA–SHS and SPS of ZrB2–ZrC composites. Solid State Ionics, 2004, vol. 172, nos. 1–4, pp. 215–216. doi 10.1016/j.ssi.2004.05.020

    Article  Google Scholar 

  11. Agaogullari, D., Gokce, H., Duman, I., and Ovecoglu, M., Characterization investigations of ZrB2/ZrC ceramic powders synthesized by mechanical alloying of elemental ZrB and C blends, J. Eur. Ceram. Soc., 2012, vol. 32, no. 7, pp. 1447–1455. doi 10.1016/j.jeurceramsoc. 2011.04.026

    Article  Google Scholar 

  12. Hu, P., Gui, K., Hong, W., and Zhang, X., Preparation of ZrB2–SiC ceramics by single-step and optimized two-step hot pressing using nanosized ZrB2 powders, Mater. Lett., 2017, vol. 200, pp. 14–17. doi 10.1016/j.matlet.2017.04.089

    Article  Google Scholar 

  13. Jalaly, M., Tamizifar, M., Bafghi, M., and Gotor, F., Mechanochemical synthesis of ZrB2–SiC–ZrC nanocomposite powder by metallothermic reduction of zircon, J. Alloys. Compd., 2013, vol. 581, pp. 782–787. doi 10.1016/j.jallcom.2013.07.142

    Article  Google Scholar 

  14. Jalaly, M., Bafghi, M., Tamizifar, M., and Gotor, F., The role of boron oxide and carbon amounts in the mechanosynthesis of ZrB2–SiC–ZrC nanocomposite via a self-sustaining reaction in the zircon/magnesium/ boron oxide/graphite system, J. Alloys. Compd., 2014, vol. 598, pp. 113–119. doi 10.1016/j.jallcom. 2014.02.033

    Article  Google Scholar 

  15. Jalaly, M., Bafghi, M.Sh., Tamizifar, M., and Gotor, F.J., An investigation on the formation mechanism of nano ZrB2 powder by a magnesiothermic reaction, J. Alloys. Compd., 2014, vol. 588, pp. 36–41. doi 10.1016/j.jallcom. 2013.11.050

    Article  Google Scholar 

  16. Postrach, S., and Potschke, J., Pressureless sintering of Al2O3 containing up to 20 vol % zirconium diboride (ZrB2), J. Eur. Ceram. Soc., 2000, vol. 20, no. 10, pp. 1459–1468. doi 10.1016/S0955–2219(00)00026-1

    Article  Google Scholar 

  17. Schneider, H., and Hildmann, B., Structure and properties of mullite–A review, J. Eur. Ceram. Soc., 2008, vol. 28, no. 2, pp. 329–334. doi 10.1016/j.jeurceramsoc. 2007.03.017

    Article  Google Scholar 

  18. Xu, X., Li. J., Wu, J., Tang, Z., Chen, L., Li, Y., and Lu, C., Preparation and thermal shock resistance of corundum–mullite composite ceramics from andalusite, Ceram. Int., 2017, vol. 43, no. 2, pp. 1762–1767. doi 10.1016/j.ceramint.2016.10.116

    Article  Google Scholar 

  19. Raghdi, A., Heraiz, M., Sahnoune, F., and Saheb, N., Mullite–zirconia composite prepared from halloysite reaction sintered with boehmite and zirconia, Appl. Clay Sci., 2017, vol. 146, pp. 70–80. doi 10.1016/j.clay.2017.05.037

    Article  Google Scholar 

  20. Varma, A., and Mukasyan, A., Combustion synthesis of advanced materials: Fundamentals and applications, Korean J. Chem. Eng., 2004, vol. 21, no. 2, pp. 527–536. doi 10.1007/BF02705444

    Article  Google Scholar 

  21. Tawat, C., Combustion synthesis of nickel–ferrite magnetic materials, Int. J. Self-Propag. High-Temp Synth., 2017, vol. 26, no. 1, pp. 40–43. doi 10.3103/S1061386217010058

    Article  Google Scholar 

  22. Sutham, N., In situ synthesis of silicon–silicon carbide composites from SiO2–C–Mg system via self-propagating high-temperature synthesis, in Properties and Applications of Silicon Carbide, Gerhardt, R., Ed., Rijeka: InTech, 2011, pp. 411–425.

    Google Scholar 

  23. Schubert, U., and Hüsing, N., Synthesis of Inorganic Materials, Weinheim: Wiley, 2012.

    Google Scholar 

  24. David, J.D., Subhash H.R., and James F.S., Mullite, in Ceramic and Glass Materials: Structure, Properties and Processing, Shackelford, J.F. and Doremus, R.H., Ed., New York: Springer, 2008, pp. 27–39.

    Google Scholar 

  25. William, D.C, Jr., and David G.R., Materials Science and Engineering: An Introduction, Massachusetts: Wiley, 2010.

    Google Scholar 

  26. Zhu, T.B., Li, Y.W., Sang, S.B., and Jin, S.L., The influence of Al and Si additives on the microstructure and mechanical properties of low-carbon MgO–C refractories, J. Ceram. Sci. Tech., 2016, vol. 7, no. 1, pp. 127–134. doi 10.4416/JCST2015–00055

    Google Scholar 

  27. Wei, W., Duan, W., and Xiaodong, W., Thermal behavior of zirconia-doped mullite gel fibers, Prog. Nat. Sci. Mater. Int., 2012, vol. 22, no. 3, pp. 213–218. doi 10.1016/j.pnsc.2012.04.002

    Article  Google Scholar 

  28. Pengchao, L., Yizheng, Z., Jinghong, M., Shuguang, Y., Jinghua, G., and Jian, X., Effect of boehmite sol on the crystallization behavior and densification of mullite formed from a sol-gel precursor, Prog. Nat. Sci. Mater. Int., 2013, vol. 23, no. 2, pp. 145–151. doi 10.1016/j.pnsc.2013.02.004

    Article  Google Scholar 

  29. Yong, J.K., Makoto. K., Takao, C., and Naoyuki, K., Fabrication of TiB2/Al composites by combustion synthesis of Al–Ti–B system, Mater. Trans., 2002, vol. 43, no. 11, pp. 2796–2801.

    Article  Google Scholar 

  30. Yeh, C.L., Chuang, H.C., Liu, E.W., and Chang, Y.C., Effects of dilution and preheating on SHS of vanadium nitride, Ceram. Int., 2005, vol. 31, no. 1, pp. 95–104. doi 10.1016/j.ceramint.2004.03.043

    Article  Google Scholar 

  31. Prokofiev, V.G., and Smolyakov, V.K., On the theory of self-propagating high-temperature synthesis in layered systems, Combust. Explo. Shock Waves, 2012, vol. 48, no. 5, pp. 636–641. doi 10.1134/S0010508212050152

    Article  Google Scholar 

  32. Chen, T., Green, P.M., Jordan, J.L., Hampikian, J.M., and Thadhani, N.N., Oxidation of Ti3SiC2 composites in air, Metall. Mater. Trans. A., 2002, vol. 33, pp. 1732–1742. doi 10.1007/s11661-002-0182-6

    Google Scholar 

  33. Jianguang, X., Yuchen, W., Baicheng, W., and Fang, C., Preparation and characterization of MoSi2/WSi2 composites from MASHSed powder, Mater. Trans., 2015, vol. 56, pp. 313–316. doi 10.2320/matertrans. M2014370

    Article  Google Scholar 

  34. Vadchenko, S.G., and Sytschev, A.E., SHS in microgravity: The Ti–Si–Al–C system, Int. J. Self-Propag. High-Temp Synth., 2008, vol. 17, no. 2, pp. 149–153. doi 10.3103/S1061386208020118

    Article  Google Scholar 

  35. Yeh, C.L., and Chen, Y.C., Effects of PTFE activation and carbon sources on combustion synthesis of Cr2AlC/Al2O3 composites, Ceram. Int., in press, 2017. doi 10.1016/j.ceramint.2017.09.187

    Google Scholar 

  36. Prokofiev, V.G., and Smolyakov, V.K., Gasless combustion in two-layer structures: A theoretical model, Int. J. Self-Propag. High-Temp Synth., 2013, vol. 22, no. 1, pp. 5–10. doi 10.3103/S1061386213010093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawat Chanadee.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanglert, N., Niyomwas, S. & Chanadee, T. Experimental Study of Combustion Synthesis in Air of ZrB2-Mullite Composite from Different Zirconium Silicate Sources. Russ. J. Non-ferrous Metals 59, 440–449 (2018). https://doi.org/10.3103/S1067821218040053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218040053

Keywords

Navigation