Skip to main content
Log in

Fabrication of Cerium Oxide Nanoparticles by Solution Combustion Synthesis and Their Cytotoxicity Evaluation

  • Self-Propagating High-Temperature Synthesis
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The diverse abilities such as the antioxidant effect of cerium oxide nanoparticles (CeO2-NPs) have encouraged researchers to pursue CeO2-NPs as a therapeutic agent to treat a number of diseases, including cancer and diabetes. The synthesis method of CeO2-NPs affected on its abilities. In this study, nanosize ceria powders were synthesized by combustion of aqueous containing corresponding cerium nitrate, ammonium nitrate, and glycine redox mixtures. Solution combustion synthesis is a fast and cost-efficient process with high purity product. The crystallite structures were characterized by various methods, including X-ray diffraction technique, high-resolution scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy technique. The combustion was flaming and yields voluminous oxides with nano size (20–30 nm). In addition, no diffraction patterns that are characteristic of impurities were observed, indicating the purity of the CeO2-NPs. In vitro cytotoxicity studies on L929 cells, a non-toxic effect in all concentration (up to 1000 μg/mL) was indicated and it can be believed that this nanoparticle will have viable applications in different medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goharshadi, E.K., Samiee, S., and Nancarrow, P., Fabrication of cerium oxide nanoparticles: characterization and optical properties, J. Colloids Interface Sci., 2011, vol. 356, pp. 473–480.

    Article  Google Scholar 

  2. Trovarelli, A., de Leitenburg, C., Boaro, M., and Dolcetti, G., The utilization of ceria in industrial catalysis, Catal. Today, 1999, vol. 50, pp. 553–367.

    Article  Google Scholar 

  3. Lavkova, J., Khalakhan, I., Chundak, M., Vorokhta, M., Potin, V., Matolin, V., and Matolinova, I., Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil, Nanoscale, 2015, vol. 7, pp. 4038–4047.

    Article  Google Scholar 

  4. Jin, H., Wang, N., Xu, L., and Hou, S., Synthesis and conductivity of cerium oxide nanoparticles, Mater. Lett., 2010, vol. 64, pp. 1254–1256.

    Article  Google Scholar 

  5. Kargar, H., Ghasemi, F., and Darroudi, M., Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays, Ceram. Int., 2015, vol. 41, pp. 1589–1594.

    Article  Google Scholar 

  6. Pulido-Reyes, G. and Rodea-Palomares, I., Das, S., Sakthivel, T.S., Leganes, F., Rosal, R., Seal, S., and Fernández-Piñas, F., Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states, Sci. Rep., 2015, vol. 5, p. 15613.

    Article  Google Scholar 

  7. Das, M., Patil, S., Bhargava, N., Kang, J.-F., Riedel, L.M., Seal, S., and Hickman, J.J., Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons, Biomaterials, 2007, vol. 28, pp. 1918–1925.

    Article  Google Scholar 

  8. Tarnuzzer, R.W., Colon, J., Patil, S., and Seal, S., Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett., 2005, vol. 5, pp. 2573–2577.

    Article  Google Scholar 

  9. Pešic, M., Podolski-Renić, A., Stojković, S., Matović, B., Zmejkoski, D., Kojić, V., Bogdanović, G., Pavićević, A., Mojović, M., and Savić, A., Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity, Chem.-Biol. Interact., 2015, vol. 232, pp. 85–93.

    Article  Google Scholar 

  10. Godinho, M., Goncalves, R., Santos, L.S., Varela, J.A., Longo, E., and Leite, E., Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9–δ powder, Mater. Lett., 2007, vol. 61, pp. 1904–1907.

    Article  Google Scholar 

  11. Meng, F., Gong, J., Fan, Z., Li, H., and Yuan, J., Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route, Ceram. Int., 2016, vol. 42, pp. 4700–4708.

    Article  Google Scholar 

  12. Tambat, S., Umale, S., and Sontakke, S., Photocatalytic degradation of Milling Yellow dye using sol–gel synthesized CeO2, Mater. Res. Bull., 2016, vol. 76, pp. 466–472.

    Article  Google Scholar 

  13. He, D., Hao, H., Chen, D., Lu, J., Zhong, L., Chen, R., Liu, F., Wan, G., He, S., and Luo, Y., Rapid synthesis of nano-scale CeO2 by microwave-assisted sol-gel method and its application for CH3SH catalytic decomposition, J. Environ. Chem. Eng., 2016, vol. 4, pp. 311–318.

    Article  Google Scholar 

  14. Dutta, S., Nandy, A., Dutta, A., and Pradhan, S., Structure and microstructure dependent ionic conductivity in 10-mol %-Dy2O3-doped CeO2 nanoparticles synthesized by mechanical alloying, Mater. Res. Bull., 2016, vol. 73, pp. 446–451.

    Article  Google Scholar 

  15. Phoka, S., Laokul, P., Swatsitang, E., Promarak, V., Seraphin, S., and Maensiri, S., Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simply polyvinyl pyrrolidone (PVP) route, Mater. Chem. Phys., 2009, vol. 115, pp. 423–428.

    Article  Google Scholar 

  16. Zhang, C., Zhang, X., Wang, Y., Xie, S., Liu, Y., Lu, X., and Tong, Y., Facile electrochemical synthesis of CeO2 hierarchical nanorods and nanowires with excellent photocatalytic activities, New J. Chem., 2014, vol. 38, pp. 2581–2586.

    Article  Google Scholar 

  17. Bakkiyaraj, R., Bharath, G., Ramsait, K.H., Abdel-Wahab, A., Alsharaeh, E.H., Chen, S.-M., and Balakrishnan, M., Solution combustion synthesis and physico-chemical properties of ultrafine CeO2 nanoparticles and their photocatalytic activity, RSC Adv., 2016, vol. 6, pp. 51238–51245.

    Article  Google Scholar 

  18. Mokkelbost, T., Kaus, I., Grande, T., and Einarsrud, M.-A., Combustion synthesis and characterization of nanocrystalline CeO2-based powders, Chem. Mater., 2004, vol. 16, pp. 5489–5494.

    Article  Google Scholar 

  19. Rao, K.V. and Sunandana, C., Co3O4 nanoparticles by chemical combustion: effect of fuel to oxidizer ratio on structure, microstructure, and EPR, Solid State Commun., 2008, vol. 148, pp. 32–37.

    Article  Google Scholar 

  20. Ravishankar, T.N., Ramakrishnappa, T., Nagaraju, G., and Rajanaika, H., Synthesis and Characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies, Chem.Open, 2015, vol. 4, pp. 146–154.

    Google Scholar 

  21. Patil, K., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, London, NJ: World Scientific, 2008.

    Book  Google Scholar 

  22. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.

    Article  Google Scholar 

  23. Demokritou, P., Gass, S., Pyrgiotakis, G., Cohen, J.M., Goldsmith, W., McKinney, W., Frazer, D., Ma, J., Schwegler-Berry, D., Brain, J., and Castranova, V., An in vivo and in vitro toxicological characterization of realistic nanoscale CeO2 inhalation exposures, Nanotoxicology, 2013, vol. 7, pp. 1338–1350.

    Article  Google Scholar 

  24. Karakoti, A.S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G., Pounds, J.G., Teeguarden, J.G., Thrall, B.D., and Baer, D.R., Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles, Surf. Interface Anal.: SIA, 2012, vol. 44, pp. 882–889.

    Article  Google Scholar 

  25. Peng, L., He, X., Zhang, P., Zhang, J., Li, Y., Zhang, J., Ma, Y., Ding, Y., Wu, Z., Chai, Z., and Zhang, Z., Comparative pulmonary toxicity of two ceria nanoparticles with the same primary size, Int. J. Mol. Sci., 2014, vol. 15, p. 6072.

    Article  Google Scholar 

  26. Heidarpour, A., Abbasi, M., Saidi, A., and Choi, G., Synthesis and sintering of Sr-and Ca-doped lanthanum chromite ultrafine powder for SOFC interconnect, J. Mater. Sci., 2013, vol. 48, pp. 1401–1406.

    Article  Google Scholar 

  27. Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: a step nearer to controllability, RSC Adv., 2014, vol. 4, pp. 58090–58100.

    Article  Google Scholar 

  28. Bondioli, F., Corradi, A.B., Leonelli, C., and Manfredini, T., Nanosized CeO2 powders obtained by flux method, Mater. Res. Bull., 1999, vol. 34, pp. 2159–2166.

    Article  Google Scholar 

  29. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immun. Methods, 1983, vol. 65, pp. 55–63.

    Article  Google Scholar 

  30. Cho, M.-Y., Roh, K.-C., Park, S.-M., Choi, H.-J., and Lee, J.-W., Control of particle size and shape of precursors for ceria using ammonium carbonate as a precipitant, Mater. Lett., 2010, vol. 64, 323–326.

    Article  Google Scholar 

  31. Foger, K., Hoang, M., and Turney, T., Formation and thermal decomposition of rare-earth carbonates, J. Mater. Sci., 1992, vol. 27, pp. 77–82.

    Article  Google Scholar 

  32. Pelletier, D.A., Suresh, A.K., Holton, G.A., McKeown, C.K., Wang, W., Gu, B., Mortensen, N.P., Allison, D.P., Joy, D.C., Allison, M.R., Brown, S.D., Phelps, T.J., and Doktycz, M.J., Effects of engineered cerium oxide nanoparticles on bacterial growth and viability, Appl. Environ. Microbiol., 2010, vol. 76, pp. 7981–7989.

    Article  Google Scholar 

  33. Alam, B., Philippe, A., Rosenfeldt, R.R., Seitz, F., Dey, S., Bundschuh, M., Schaumann, G.E., and Brenner, S.A., Synthesis, characterization, and ecotoxicity of CeO2 nanoparticles with differing properties, J. Nanopart. Res., 2016, vol. 18, p. 303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zarezadeh Mehrizi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarezadeh Mehrizi, M., Ahmadi, S., Beygi, R. et al. Fabrication of Cerium Oxide Nanoparticles by Solution Combustion Synthesis and Their Cytotoxicity Evaluation. Russ. J. Non-ferrous Metals 59, 111–116 (2018). https://doi.org/10.3103/S1067821218010170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218010170

Keywords

Navigation