Skip to main content
Log in

Hardness, adhesion strength, and tribological properties of adaptive nanostructured ion-plasma vacuum-arc coatings (Ti,Al)N–Mo2N

  • Physical Metallurgy and Heat Treatment
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The properties of nanostructured multilayered coatings of the composition (Ti,Al)N–Mo2N, which were fabricated by the ion-plasma vacuum-arc deposition (arc-PVD), are investigated. The thickness of coating layers is comparable with the grain size, which is about 30–50 nm. The coating hardness reaches 40 GPa with relative plastic deformation work of about 60%. It is established by measuring scratching that the cohesion destruction character of the coating occurs exclusively according to the plastic deformation mechanism, which evidences its high fracture toughness. The local coating attrition to the substrate takes place under a load on the order of 75 N. The coating friction coefficient in testing conditions according to the “pin-on-disc” layout using the Al2O3 counterbody under a load of 5 N is 0.35 and 0.50 at temperatures of 20 and 500°C, respectively. The coating is almost unworn because of the formation of MoO3 oxide (the Magneli phase) operating as the solid lubricant in the friction zone. An increase in the friction coefficient and noticeable wear are observed with the further increase in the testing temperature, which is associated with the sublimation intensification of MoO3 from the working surfaces and lowering its operational efficiency as the lubricant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichimura, H. and Rodrigo, A., The correlation of scratch adhesion with composite hardness for tin coatings, Surf. Coat. Technol., 2000, vol. 126, pp. 152–158.

    Article  Google Scholar 

  2. Yasuo Tanno, Hiroyuki Iwata, and Kohshiro Aoki, Coefficients of friction of tin coatings with preferred grain orientations under dry condition, Wear, 2008, vol. 265, nos. 7–8, pp. 1017–1022.

  3. Tanno, Y. and Azushima, A., Effect of counter materials on coefficients of friction of tin coatings with preferred grain orientations, Wear, 2009, vol. 266, nos. 11–12, pp. 1178–1184.

    Article  Google Scholar 

  4. Ramalho, A. and Celis, J.-P., High temperature fretting behaviour of plasma vapour deposition tin coatings, Surf. Coat. Technol., 2002, vol. 155, pp. 169–175.

    Article  Google Scholar 

  5. Jianxin, D. and Aihua, L., Dry sliding wear behavior of PVD TiN,Ti55Al45N,and Ti35Al65N coatings at temperatures up to 600°C, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 241–249.

    Article  Google Scholar 

  6. Fateh, N., Fontalvo, G.A., Gassner, G., and Mitterer, C., Influence of high-temperature oxide formation on the tribological behavior of TiN and VNcoatings, Wear, 2007, vol. 262, nos. 9–10, pp. 1152–1158.

    Article  Google Scholar 

  7. Badisch, E., Fontalvo, G.A., Stoiber, M., and Mitterer, C., Tribological behavior of PACVD TiN coatings in the temperature range up to 500°C, Surf. Coat. Technol., 2003, vols. 163–164, pp. 585–590.

    Article  Google Scholar 

  8. Franz, R. and Mitterer, C., Vanadium containing selfadaptive low-friction hard coatings for high-temperature applications: a review, Surf. Coat. Technol., 2013, vol. 228, pp. 1–13.

    Article  Google Scholar 

  9. Lugscheider, E., Knotek, O., Bobzin, K., and Barwulf, S., Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadiumoxides deposited by reactive MSIP-PVD process for innovative lubrication applications, Surf. Coat. Technol., 2000, vols. 133–134, pp. 362–368.

    Google Scholar 

  10. Solak, N., Ustel, F., Urgen, M., Aydin, S., and Cakir, A.F., Oxidation behavior of molybdenum nitride coatings, Surf. Coat. Technol., 2003, vols. 174–175, pp. 713–719.

    Article  Google Scholar 

  11. Gassner, G., Mayrhofer, P.H., Kutschej, K., Mitterer, C., and Kathrein, M., Magneli phase formation of PVD Mo–N and W–N coatings, Surf. Coat. Technol, 2006, vol. 201, pp. 3335–3341.

    Article  Google Scholar 

  12. Yang, Q., Zhao, L.R., Patnaik, P.C., and Zeng, X.T., Wear resistant TiMoN coatings deposited by magnetron, Wear, 2006, vol. 261, no. 2, pp. 119–125.

    Article  Google Scholar 

  13. Tian, B., Yue, W., Fu, Zh., Gu, Y., Wang, Ch., and Liu, J., Surface properties of Mo-implanted PVD TiN coatings using MEVVA source, Appl. Surf. Sci., 2013, vol. 280, pp. 482–488.

    Article  Google Scholar 

  14. Deng, B., Tao, Y., Wang, Y., and Liu, P., Study of the microstructure and tribological properties of Mo+Cimplanted TiN coatings on cemented carbide substrates, Surf. Coat. Technol., 2013, vol. 228, pp. 597–600.

    Article  Google Scholar 

  15. Andrievskii, R.A., Nanomaterials: concept and contemporary issues, Ross. Khim. Zh., 2002, vol. 19, no. 5, pp. 50–56.

    Google Scholar 

  16. Gutkin, M.Yu. and Ovid’ko, I.A., Fizicheskaya mekhanika deformiruemykh nanostruktur. T. 1: Nanokristallicheskie materialy (Physical Mechanics of Deformed Nanostructures. Vol. !: Nanocrystalline Materials), St. Petersburg: Yanus, 2003.

    Google Scholar 

  17. Nordin, M., Larsson, M., and Hogmark, S., Mechanical and tribological properties of multilayered PVD TiN/CrN, Wear, 1999, vol. 232, no. 2, pp. 221–225.

    Article  Google Scholar 

  18. Avila, R.F. and Mancosu, R.D., Comparative analysis of wear on PVD TiN (TixAlx)N) coatings in machining process, Wear, 2013, vol. 302, nos. 1–2, pp. 1192–1200.

    Article  Google Scholar 

  19. Zhou, Y., Asaki, R., Soe, W-H., Yamamoto, R., Chen, R., and Iwabuchi, A., Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers, Wear, 1999, vol. 236, nos. 1–2, pp. 159–164.

    Article  Google Scholar 

  20. Golovin, Yu.I., Vvedenie v nanotekhniku (Introductory Nanotechnology), Moscow: Mashinostroenie, 2007.

    Google Scholar 

  21. ISO/FDIS14577-1:2002. Metallic materials—instrumental indentation test for hardness and materials parameters.

  22. GOST 6130–71. Metally. Metody opredeleniya zharostoikosti (Metals. Determination Methods of Heat Resistance), Moscow: Izd. Standartov, 1971.

  23. Leyland, A. and Matthews, A., On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior, Wear, 2000, vol. 246, nos. 1–2, pp. 1–11.

    Article  Google Scholar 

  24. Tsui, T.Y., Pharr, G.M., Oliver, W.C., Bhatia, C.S., White, R.L., Anders, S., Anders, A., and Brown, I.G., Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mater. Res. Soc. Symp. Proc., 1995, vol. 383, pp. 447–452.

    Article  Google Scholar 

  25. Anikin, V.N., Blinkov, I.V., Volkhonskii, A.O., Sobolev, N.A., Tsareva, S.G., Kratokhvil, R.V., and Frolov, A.E., Ion-plasma Ti–Al–N coatings on a cutting hard-alloy tool operating under conditions of constant and alternating-sign loads, Russ. J. Non-Ferrous Met., 2009, vol. 50, no. 4, pp. 424–431.

    Article  Google Scholar 

  26. Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-Rays Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

    Google Scholar 

  27. Sanjines, R., Wiemer, C., Almeida, J., and Levy, F., Valence band photoemission study of the Ti–Mo–N system, Thin Solid Films, 1996, vol. 290–291, pp. 334–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sergevnin.

Additional information

Original Russian Text © V.S. Sergevnin, I.V. Blinkov, D.S. Belov, A.O. Volkhonskii, A.Yu. Krupin, A.V. Chernogor, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2016, No. 4, pp. 67–75.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergevnin, V.S., Blinkov, I.V., Belov, D.S. et al. Hardness, adhesion strength, and tribological properties of adaptive nanostructured ion-plasma vacuum-arc coatings (Ti,Al)N–Mo2N. Russ. J. Non-ferrous Metals 57, 572–579 (2016). https://doi.org/10.3103/S1067821216060134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821216060134

Keywords

Navigation