Skip to main content
Log in

Superhydrophobic and anti-icing properties of sol–gel prepared alumina coatings

  • Application of Powder Materials and Functional Coatings
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Sol–gel is a convenient method to fabricate micro-nano structures on various surfaces. In the present study, rough alumina surfaces were prepared from aluminum isopropoxide and ethyl acetoacetate and modified with low-concentration lauric acid (LA) dissolved in ethanol. The sample hydrophobicity and antiicing property were optimized by changing the rotation speed, rotation time, and coating thickness during spin-coating, and the type and concentration of surface modifier used during surface hydrophobization. Superhydrophobic surfaces were achieved with contact angle values as high as 157.6°, when 0.4-mm-thick coatings were modified with 0.4% LA dissolved in ethanol. The surface morphology of the superhydrophobic samples was shown to be rough at micro/nano-scale, which allowed them to demonstrate excellent anti-icing properties. Specifically, the optimized sample could delay the icing time and reduce the freezing temperature from 15 min and–4.1°C (for uncoated aluminum) to 65 min and–8.3°C, respectively, while also reducing the ice adhesion strength twice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y., Wu, Z., Su, Y., and Xu, Z., Aircraft flight characteristics in icing conditions, Prog. Aerosp. Sci., 2015, vol. 74, pp. 62–80. doi 10.1016/j.paerosci.2014.12.001

    Article  Google Scholar 

  2. Habibi, H., Cheng, L., Zheng, H., Kappatos, V., Selcuk, C., and Gan, T.-H., A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations, Renew. En., 2015, vol. 83, pp. 859–870. doi 10.1016/j.renene.2015.05.025

    Article  Google Scholar 

  3. Lacavalla, M., Marcacci, P., and Frigerio, A. In Forecasting and monitoring wet-snow sleeve on overhead power lines in Italy, 2015 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems (EESMS), 2015, pp. 78–83.

    Chapter  Google Scholar 

  4. Saito, H., Takai, K., and Yamauchi, G., Water-and icerepellent coatings, Surf. Coat. Int., 1997, vol. 80, no. 4, pp. 168–171. doi 10.1007/BF02692637

    Article  Google Scholar 

  5. Mulherin, N.D. and Haehnel, R.B., Ice Engineering: Progress in Evaluating Surface Coatings for Icing Control at Corps Hydraulic Structures, Hanover, New Hampshire: U.S. Army Engineer Research and Development Center, 2003, vol. ERDC/CRREL TN-03-4.

    Google Scholar 

  6. Zheng, L., Li, Z., Bourdo, S., Khedir, K.R., Asar, M.P., Ryerson, C.C., and Biris, A.S., Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films, Langmuir, 2011, vol. 27, no. 16, pp. 9936–9943. doi 10.1021/la201548k

    Article  Google Scholar 

  7. Ruan, M., Li, W., Wang, B., Deng, B., Ma, F., and Yu, Z., Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates, Langmuir, 2013, vol. 29, no. 27, pp. 8482–8491. doi 10.1021/la400979d

    Article  Google Scholar 

  8. Gao, X. and Jiang, L., Biophysics: water-repellent legs of water striders, Nature, 2004, vol. 432, no. 7013, pp. 36–36. doi 10.1038/432036a

    Article  Google Scholar 

  9. Shirtcliffe, N.J., McHale, G., Newton, M.I., and Zhang, Y., Superhydrophobic copper tubes with possible flow enhancement and drag reduction, ACS Appl. Mater. Interfaces, 2009, vol. 1, no. 6, pp. 1316–1323. doi 10.1021/am9001937

    Article  Google Scholar 

  10. Chen, Y., Chen, S., Yu, F., Sun, W., Zhu, H., and Yin, Y., Fabrication and anti-corrosion property of superhydrophobic hybrid film on copper surface and its formation mechanism, Surf. Interface Anal., 2009, vol. 41, no. 11, pp. 872–877. doi 10.1002/sia.3102

    Article  Google Scholar 

  11. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces, Nature, 1997, vol. 388, pp. 431–432. doi 10.1038/41233

    Article  Google Scholar 

  12. Cao, L., Jones, A.K., Sikka, V K., Wu, J., and Gao, D., Anti-icing superhydrophobic coatings, Langmuir, 2009, vol. 25, no. 21, pp. 12444–12448. doi 10.1021/la902882b

    Article  Google Scholar 

  13. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 2002, vol. 14, no. 24, pp. 1857–1860. doi 10.1002/adma.200290020

    Article  Google Scholar 

  14. Kulinich, S.A. and Farzaneh, M., Ice adhesion on superhydrophobic surfaces, Appl. Surf. Sci., 2009, vol. 255, no. 18, pp. 8153–8157. doi 10.1016/j.apsusc.2009.05.033

    Article  Google Scholar 

  15. Guo, P., Zheng, Y., Wen, M., Song, C., Lin, Y., and Jiang, L., Icephobic/anti-icing properties of micro/nanostructured surfaces, Adv. Mater., 2012, vol. 24, no. 19, pp. 2642–2648. doi 10.1002/adma.201104412

    Article  Google Scholar 

  16. Arianpour, F., Farzaneh, M., and Kulinich, S.A., Hydrophobic and ice-retarding properties of doped silicone rubber coatings, Appl. Surf. Sci., 2013, vol. 265, pp. 546–552. doi 10.1016/j.apsusc.2012.11.042

    Article  Google Scholar 

  17. Wang, Y., Xue, J., Wang, Q., Chen, Q., and Ding, J., Verification of icephobic/anti-icing properties of a superhydrophobic surface, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 8, pp. 3370–3381. doi 10.1021/am400429q

    Article  Google Scholar 

  18. Kulinich, S.A., Farhadi, S., Nose, K., and Du, X.W., Superhydrophobic surfaces: Are they really ice-repellent?, Langmuir, 2011, vol. 27, no. 1, pp. 25–29. doi 10.1021/la104277q

    Article  Google Scholar 

  19. Farhadi, S., Farzaneh, M., and Kulinich, S.A., Antiicing performance of superhydrophobic surfaces, Appl. Surf. Sci., 2011, vol. 257, no. 14, pp. 6264–6269. doi 10.1016/j.apsusc.2011.02.057

    Article  Google Scholar 

  20. Kulinich, S.A., Honda, M., Zhu, A., Rozhin, A.G., and Du, X.W., The icephobic performance of alkylgrafted aluminum surfaces, Soft Matter., 2015, vol. 11, no. 5, pp. 856–861. doi 10.1039/C4SM02204A

    Article  Google Scholar 

  21. Xue, C.-H., Jia, S.-T., Zhang, J., and Ma, J.-Z., Largearea fabrication of superhydrophobic surfaces for practical applications: an overview, Sci. Technol. Adv. Mater., 2016, vol. 11, p. 033002. doi 10.1088/1468- 6996/11/3/033002

  22. Qian, B. and Shen, Z., Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates, Langmuir, 2005, vol. 21, no. 20, pp. 9007–9009. doi 10.1021/la051308c

    Google Scholar 

  23. Shibuichi, S., Yamamoto, T., Onda, T., and Tsujii, K., Super water-and oil-repellent surfaces resulting from fractal structure, J. Colloid Interface Sci., 1998, vol. 208, no. 1, pp. 287–294. doi 10.1006/jcis.1998.5813

    Article  Google Scholar 

  24. Baldacchini, T., Carey, J.E., Zhou, M., and Mazur, E., Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser, Langmuir, 2006, vol. 22, no. 11, pp. 4917–4919. doi 10.1021/la053374k

    Article  Google Scholar 

  25. Ma, M., Mao, Y., Gupta, M., Gleason, K.K., and Rutledge, G.C., Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules, 2005, vol. 38, no. 23, pp. 9742–9748. doi 10.1021/ma0511189

    Article  Google Scholar 

  26. Lu, H., Gao, K., and Chu, W., Determination of tensile stress induced by dezincification layer during corrosion for brass, Corr. Sci., 1998, vol. 40, no. 10, pp. 1663–1670. doi 10.1016/S0010-938X(98)00063-8

    Article  Google Scholar 

  27. Laforte, J., Allaire, M., and Laflamme, J., State-ofthe- art on power line de-icing, Atm. Res., 1998, vol. 46, no. 1, pp. 143–158. doi 10.1016/S0169-8095(97)00057-4

    Article  Google Scholar 

  28. Fu, Q., Wu, X., Kumar, D., Ho, J.W., Kanhere, P.D., Srikanth, N., Liu, E., Wilson, P., and Chen, Z., Development of sol–gel icephobic coatings: Effect of surface roughness and surface energy, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 23, pp. 20685–20692. doi 10.1021/am504348x

    Article  Google Scholar 

  29. Ayres, J., Simendinger, W., and Balik, C., Characterization of titanium alkoxide sol–gel systems designed for anti-icing coatings, II: Mass loss kinetics, J. Coat. Technol. Res., 2007, vol. 4, no. 4, pp. 473–481. doi 10.1007/s11998-007-9055-7

    Google Scholar 

  30. Tang, Y., Zhang, Q., Zhan, X., and Chen, F., Superhydrophobic and anti-icing properties at overcooled temperature of a fluorinated hybrid surface prepared via a sol–gel process, Soft Matter, 2015, vol. 11, no. 22, pp. 4540–4550. doi 10.1039/C5SM00674K

    Article  Google Scholar 

  31. Zhang, S. and Dreizin, E.L., Reaction interface for heterogeneous oxidation of aluminum powders, J. Phys. Chem. C, 2013, vol. 117, no. 27, pp. 14025–14031. doi 10.1021/jp402990v

    Article  Google Scholar 

  32. Shi, M., Xi, J., Wang, H., and Wu, X., A translucent and superhydrophobic surface prepared with a sol–gel method based on alumina nanoparticles, J. Adhes. Sci. Technol., 2008, vol. 22, nos. 3–4, pp. 311–318. doi 10.1163/156856108X295419

    Article  Google Scholar 

  33. Wang, S., Song, Y., and Jiang, L., Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids, Nanotechnology, 2006, vol. 18, no. 1, p. 015103. doi 10.1088/0957- 4484/18/1/015103

    Article  Google Scholar 

  34. Wang, S., Feng, L., and Jiang, L., One-step solutionimmersion process for the fabrication of stable bionic superhydrophobic surfaces, Adv. Mater., 2006, vol. 18, no. 6, pp. 767–770. doi 10.1002/adma.200501794

    Article  Google Scholar 

  35. Dakhakhni, T.H., Raouf, G.A., and Qusti, S.Y., Evaluation of the toxic effect of the herbicide 2,4-D on rat hepatocytes: An FT-IR spectroscopic study, Eur. Biophys. J., 2015, vol. 12, no. 2, pp. 1–10.

    Google Scholar 

  36. Lummerstorfer, T. and Hoffmann, H., IR reflection spectra of monolayer films sandwiched between two high refractive index materials, Langmuir, 2004, vol. 20, no. 16, pp. 6542–6545. doi 10.1021/la0492916

    Article  Google Scholar 

  37. Tao, Y.T., Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum, J. Am. Chem. Soc., 1993, vol. 115, no. 10, pp. 4350–4358. doi 10.1021/ja00063a062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruan.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, M., Wang, J.W., Liu, Q.L. et al. Superhydrophobic and anti-icing properties of sol–gel prepared alumina coatings. Russ. J. Non-ferrous Metals 57, 638–645 (2016). https://doi.org/10.3103/S1067821216060122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821216060122

Keywords

Navigation