Skip to main content
Log in

Kinetics and contact interaction mechanism of titanium carbonitride with the Ni–Mo melt

  • Refractory, Ceramic, and Composite Materials
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Kinetic features and the contact interaction mechanism of hot-pressed (residual porosity <3%) of titanium carbonitride samples of various compositions with the Ni–25% Mo melt (t = 1400–1500°C, τ = 0.1–25 h) are investigated by electron-probe microanalysis. It is established that the dissolution rate of the interstitial refractory phase (IRP) in the Ni–Mo melt lowers in a series TiC–TiC0.7N0.3–TiC0.5N0.5, while the degree of process incongruence rises. The composition of intermediate interaction products varies correspondingly. The peculiarities of formation of the most important phase component of the TiCN cermets—K-phase of the Ti1–n Mo n C x composition—are revealed. It is proven by the local mass spectrometry method that the K-phase has a carbide nature. It is also established that it is formed only if the initial titanium carbonitride TiC1–x N x is sufficiently enriched with carbon (x ≤ 0.5). It is stated that the K-phase is an actual basis of all cermets with the Ni–Mo binder. Its bulk concentration in alloys exceeds the content of the nominal alloy base by a factor of several times. The chemical substantiation of the selection of titanium carbonitride of the TiC0.5N0.5 composition as an optimal “precursor” of the K-phase, which is formed during liquid-phase sintering of TiCN cermets, is given originally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lengauer, W., Transition metal carbides, nitrides, and carbonitrides, in Handbook of Ceramic Hard Materials, Riedel, R., Ed., Weinheim: Willey, 2000, pp. 203–252.

    Google Scholar 

  2. Zhang, S., Material development of titanium carbonitride based cermets for machining application, Key Eng. Mater., 1998, vol. 138–140, pp. 521–543.

    Article  Google Scholar 

  3. Bellosi, A., Calzavarini, R., Faga, M.G., et al., Characterization and application of titanium carbonitridebased cutting tools, J. Mater. Proc. Technol., 2003, vol. 143–144, pp. 527–532.

    Article  Google Scholar 

  4. Xiong, J., Guo, Z., Wen, B., Li, C., and Shen, B., Microstructure and properties of ultra-fine TiC0.7N0.3 cermet, Mater. Sci. Eng., 2006, vol. 416, nos. 1–2, pp. 51–58.

    Article  Google Scholar 

  5. Zhou, S., Zhao, W., and Xiong, W., Microstructure and properties of the cermets based on Ti(C, N), Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 1, pp. 26–32.

    Article  Google Scholar 

  6. Peng, Y., Miao, H., and Peng, Z., Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, pp. 78–89.

    Article  Google Scholar 

  7. Moskowitz, D. and Plummer, H.K., Binder–carbide phase interaction in titanium carbide base system, in Proc. Int. Conf. Sci. Hard Mater. (Jackson, Wyo, 1981), New York–London, 1983, pp. 299–308.

    Google Scholar 

  8. Wally, P., Binder, S., Ettmayer, P., and Lengauer, W., Reaction of compact carbonitrides with liquid binder metals, J. Alloys and Compd., 1995, vol. 230, no. 1, pp. 53–57.

    Article  Google Scholar 

  9. Zackrisson, J., Rolander, U., and Andren, H.-O., Development of cermet microstructures during sintering, Metal. Mater. Trans, 2001, vol. 32, no. 1, pp. 85–94.

    Article  Google Scholar 

  10. Li, P., Ye, J., Liu, Y., Yang, D., and Yu, H., Study on the formation of core-rim structure in Ti(CN)-based cermets, Int. J. Refract. Metal. Hard Mater., 2012, vol. 35, pp. 27–31.

    Article  Google Scholar 

  11. Zhilyaev, V.A., Interrelation of the composition, structure, and physical properties of refractory interstitial phases, Vestn. PGTU. Mashinostr., Materialoved., 2011, vol. 13, no. 3, pp. 106–116.

    Google Scholar 

  12. Zhilyaev, V.A., Solid-solution nature of refractory interstitial phases. Part I. Physical substantiation, Materialovedenie, 2012, no. 3, pp. 3–9.

    Google Scholar 

  13. Zhilyaev, V.A., Solid-solution nature of refractory interstitial phases. Part I. Chemical substantiation, Materialovedenie, 2012, no. 4, pp. 3–12.

    Google Scholar 

  14. Zhilyaev, V.A., Interrelation of the composition, structure, and chemical properties of refractory interstitial phases. Part I. Regularities of reaction of refractory phases with solid reagents, Vestn. PNIPU. Mashinostr., Materialoved., 2012, vol. 14, no. 3, pp. 7–21.

    Google Scholar 

  15. Zhilyaev, V.A., Interrelation of the composition, structure, and chemical properties of refractory interstitial phases. Part II. Nature of chemical and electrochemical activity of refractory interstitial phases in mineral acids, Vestn. PNIPU. Mashinostr., Materialoved., 2012, vol. 14, no. 4, pp. 61–72.

    Google Scholar 

  16. Zhilyaev, V.A., Interrelation of the composition, structure, and chemical properties of refractory interstitial phases. Part III. Regularities of manifestation of chemical activity of refractory interstitial phases in air-vacuum and gas media, Vestn. PNIPU. Mashinostr., Materialoved., 2013, vol. 15, no. 1, pp. 7–19.

    Google Scholar 

  17. Cardinal, S., Malchere, A., Garnier, V., and Fantozzi, G., Microstructure and mechanical properties of TiC–TiN based cermets, Int. J. Refract. Metal. Hard Mater., 2009, vol. 27, pp. 521–527.

    Article  Google Scholar 

  18. Metallokhimicheskie svoistva elementov Periodicheskoi sistemy: Spravochnik (Metallochemical Properties of Elements of the Periodic System: Handbook) Kornilov, I.I, Ed., Moscow: Nauka, 1966.

  19. Kowanda, C. and Speidel, M.O., Solubility of nitrogen in liquid nickel and Ni–X i alloys (X i = Cr, Mo, W, Mn, Fe, Co) under elevated pressure, Scr. Mater., 2003, vol. 48, pp. 1073–1078.

    Article  Google Scholar 

  20. Plaksin E.K., Investigation and Development of the Industrial Production Technology of Titanium Carbonitride- Based Hard Alloys, Cand. Sci. (Eng.) Dissertation, Moscow: Mosk. Inst. Tonk. Khim. Tekhnol., 1977.

    Google Scholar 

  21. Zhilyaev, V.A. and Patrakov, E.I., Influence of the fabrication method of TiC–Ni–Mo alloy on the formation peculiarities of its composition and structure, Poroshk. Metall., 1989, no. 8, pp. 47–53.

    Google Scholar 

  22. Mari, D., Bolognini, S., Feusier, G., et al., TiMoCN based cermets. Pt. I. Morphology and phase composition, Int. J. Refract. Metal. Hard Mater., 2003, vol. 21, nos. 1–2, pp. 37–46.

    Article  Google Scholar 

  23. Russias, J., Cardinal, S., Aguni, Y., et al., Influence of titanium nitride addition on the microstructure and mechanical properties of TiC-based cermets, Int. J. Refract. Metal. Hard Mater., 2005, vol. 23, nos. 4–6, pp. 358–362.

    Article  Google Scholar 

  24. Jung, J. and Kang, S., Effect of nano-size powders on the microstructure of Ti(C, N)–xWC–Ni-cermets, J. Am. Ceram. Soc., 2007, vol. 90, no. 7, pp. 2178–2183.

    Article  Google Scholar 

  25. Nishigaki, K., Ohnishi, T., Shiokawa, T., et al., Effect of carbon content on mechanical properties of TiC–8Mo2C–15Ni cermet, Modern. Dev. Powder Metal., 1974, vol. 8, no. 11, pp. 627–643.

    Google Scholar 

  26. Doi, H., Advanced TiC and TiC–TiN based cermets, in Proc. 2nd Int. Conf. Sci. Hard Mater. (Rhodes, Greece, 1984), Bristol–Boston, 1986, pp. 489–523.

    Google Scholar 

  27. Lyubimov, V.D., Elinson, D.S., and Shveikin, G.P., Optimization of operational properties of tungsten-free hard alloys, Poroshk. Metall., 1991, no. 11, pp. 65–71.

    Google Scholar 

  28. Suzuki, H., Hayashi, K., and Terada, O., Relation between mechanical properties and microstructures in TiC–Mo2C–Ni alloys, J. Jap. Inst. Met., 1972, vol. 36, no. 5, pp. 514–518.

    Google Scholar 

  29. Komac, M. and Novak, S., Mechanical and wear behavior of tic cemented carbides, Int. J. Refract. Hard Metal., 1985, vol. 4, no. 1, pp. 21–25.

    Google Scholar 

  30. Thümmler, F., Holleck, H., and Prakash, L., New results in field of cemented carbides, High Temp.-High Press., 1982, vol. 14, no. 2, pp. 129–141.

    Google Scholar 

  31. Kurishita, K., Matsubara, R., Shiraishi, J., et al., Solution hardening of titanium carbide by molybdenum, Trans. Jap. Inst. Met., 1986, vol. 27, no. 11, pp. 858–869.

    Article  Google Scholar 

  32. Kurishita, K., Shiraishi, J., Matsubara, R., et al., Measurement and analysis of the strength of Mo–TiC composites in temperature range 285–2270 K, Trans. Jap. Inst. Met., 1987, vol. 28, no. 1, pp. 20–31.

    Article  Google Scholar 

  33. Tret’yakov, V.I., Emel’yanova, T.A., Mashevskaya, V.I., et al., Issledovanie skhvatyvaemosti karbidnoi osnovy tverdykh splavov s zharoprochnym splavom na osnove nikelya (Investigation into the Seizure of the Hard Alloy). Carbide Bases with the Nickel-Based Refractory Alloy), Sb. Tr. Vsesoyuzn. Nauch.-Issl. Inst. Tverd. Splav., 1978, no. 18, pp. 63–65.

    Google Scholar 

  34. Kudaka, K., New type of microstructure for TiC–Mo–Ni cermet, J. Am. Ceram. Soc., 1973, vol. 56, no. 5, pp. 484–489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zhilyaev.

Additional information

Original Russian Text © V.A. Zhilyaev, E.I. Patrakov, 2015, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2015, No. 2, pp. 30–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilyaev, V.A., Patrakov, E.I. Kinetics and contact interaction mechanism of titanium carbonitride with the Ni–Mo melt. Russ. J. Non-ferrous Metals 57, 497–503 (2016). https://doi.org/10.3103/S1067821216050187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821216050187

Keywords

Navigation