Skip to main content
Log in

Limiting law results for a class of conditional mode estimates for functional stationary ergodic data

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

The main purpose of the present work is to establish the functional asymptotic normality of a class of kernel conditional mode estimates when functional stationary ergodic data are considered. More precisely, consider a random variable (X,Z) taking values in some semi-metric abstract space E × F. For a real function φ defined on F and for each xE, we consider the conditional mode, say ⊝φ(x), of the real random variable φ(Z) given the event “X = x”. While estimating the conditional mode function by Θ̂φ,n(x), using the kernel-type estimator, we establish the limiting law of the family of processes {Θ̂φ(x) - Θφ(x)} (suitably normalized) over Vapnik–Chervonenkis class C of functions φ. Beyond ergodicity, no other assumption is imposed on the data. This paper extends the scope of some previous results established under mixing condition for a fixed function φ. From this result, the asymptotic normality of a class of predictors is derived and confidence bands are constructed. Finally, a general notion of bootstrapped conditional mode constructed by exchangeably weighting samples is presented. The usefulness of this result will be illustrated in the construction of confidence bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Aldous, “Exchangeability and Related Topics”, in Lecture Notes in Math., Vol. 1117: École d’étéde probabilités de Saint-Flour, XIII—1983 (Springer, Berlin, 1985), pp. 1–198.

    Google Scholar 

  2. D.W. K. Andrews, “NonstrongMixing Autoregressive Processes”, J. Appl. Probab. 21(4), 930–934 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Attaoui, A. Laksaci, and E. Ould Said, “A Note on the Conditional Density Estimate in the Single Functional IndexModel”, Statist. Probab. Lett. 81(1), 45–53 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bae, D. Jun, and S. Levental, “The Uniform CLT for Martingale Difference Arrays under the Uniformly Integrable Entropy”, Bull. Korean Math. Soc. 47(1), 39–51 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Barbe and P. Bertail, The Weighted Bootstrap, in Lecture Notes in Statist. (Springer-Verlag, New York, 1995), Vol.98.

  6. R. C. Bradley, Introduction to StrongMixing Conditions (Kendrick Press, Heber City, UT, 2007), Vol.1.

  7. M. Chaouch, N. Laïb, and D. Louani, “Rate of Uniform Consistency for a Class of Mode Regression on Functional Stationary Ergodic Data”, in Statistical Methods and Applications (2016) (in press). DOI 10.1007/s10260-016-0356-9.

    Google Scholar 

  8. Y. S. Chow and H. Teicher, Probability theory (Independence, Interchangeability, Martingales), 3rd ed., in Springer Texts in Statistics (Springer-Verlag, New York, 1997).

    Book  MATH  Google Scholar 

  9. S. Csörgőand D. M. Mason, “Bootstrapping Empirical Functions”, Ann. Statist. 17(4), 1447–1471 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Dabo-Niang and A. Laksaci, “Estimation non paramétrique demode conditionnel pour variable explicative fonctionnelle”, C. R.Math. Acad. Sci. Paris 344(1), 49–52 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Delsol, “Advances on Asymptotic Normality in Nonparametric Functional Time Series Analysis”, Statistics 43(1), 13–33 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Demongeot, A. Laksaci, F. Madani, and M. Rachdi, “Estimation locale linéaire de la densitéconditionnelle pour des données fonctionnelles”, C. R.Math. Acad. Sci. Paris 348(15–16), 931–934 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Efron, “BootstrapMethods: Another Look at the Jackknife”, Ann. Statist. 7(1), 1–26 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Ezzahrioui and E. Ould Saï d, “Asymptotic Normality of a Nonparametric Estimator of the Conditional Mode Function for Functional Data”, J. Nonparam. Statist. 20(1), 3–18 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Ezzahrioui and E. Ould Saïd, “Some Asymptotic Results of a Nonparametric ConditionalMode Estimator for Functional Time-Series Data”, Statist. Neerl. 64(2), 171–201 (2010).

    Article  Google Scholar 

  16. F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis (Theory and Practice) in Springer Series in Statistics (Springer, New York, 2006).

    MATH  Google Scholar 

  17. F. Ferraty, A. Laksaci, and P. Vieu, “Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models”, Statist. Inference Stoch. Process. 9(1), 47–76 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Ferraty, A. Laksaci, A. Tadj, and P. Vieu, “Rate of Uniform Consistency for Nonparametric Estimates with Functional Variables”, J. Statist. Plann. Inference 140(2), 335–352 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Hall and J. Horowitz, “A Simple BootstrapMethod for Constructing Nonparametric Confidence Bands for Functions”, Ann. Statist. 41(4), 1892–1921 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Hall and C. C. Heyde, Martingale Limit Theory and Its Application (Probab. and Math. Statist.). (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980).

    MATH  Google Scholar 

  21. J. Hoffmann-Jørgensen, Stochastic Processes on Polish Spaces, in Various Publications Series (Aarhus) (Aarhus Univ. Matem. Inst., Aarhus, 1991), Vol.39.

  22. L. Horváth and P. Kokoszka, Inference for Functional Data with Applications, in Springer Series in Statistics (Springer, New York, 2012).

    Book  MATH  Google Scholar 

  23. L. F, James, “A Study of a Class ofWeighted Bootstraps for CensoredData”, Ann. Statist. 25(4), 1595–1621 (1997).

    Article  MathSciNet  Google Scholar 

  24. A. Janssen, “Resampling Student’s t-Type Statistics”, Ann. Inst. Statist. Math. 57(3), 507–529 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Janssen and T. Pauls, “How Do Bootstrap and Permutation TestsWork?”, Ann. Statist. 31(3), 768–806 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. O. Kallenberg, Foundations of Modern Probability, 2nd ed., in Probability and Its Applications (New York) (Springer-Verlag, New York, 2002).

    Book  MATH  Google Scholar 

  27. A. N. Kolmogorov and V. M. Tihomirov, “e-Entropy and e-Capacity of Sets in Functional Space”, Amer. Math. Soc. Transl. (2) 17, 277–364 (1961).

    Article  MathSciNet  Google Scholar 

  28. M. R. Kosorok, Introduction to Empirical Processes and Semiparametric Inference, in Springer Series in Statistics (Springer, New York, 2008).

    MATH  Google Scholar 

  29. N. Laïb, “Kernel Estimates of the Mean and the Volatility Functions in a Nonlinear Autoregressive Model with ARCH Errors”, J. Statist. Plann. Inference 134(1), 116–139 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Laïb and D. Louani, “Nonparametric Kernel Regression Estimation for Functional Stationary Ergodic Data: Asymptotic Properties”, J. Multivariate Anal. 101(10), 2266–2281 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Laïb and D. Louani, “Rates of Strong Consistencies of the Regression Function Estimator for Functional Stationary Ergodic Data”, J. Statist. Plann. Inference 141(1), 359–372 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Leucht and M.H. Neumann, “Degenerate U-and V -Statistics under Ergodicity: Asymptotics, Bootstrap and Applications in Statistics”, Ann. Inst. Statist. Math. 65 (2), 349–386 (2013a).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Leucht and M. H. Neumann, “Dependent Wild Bootstrap for Degenerate U-and V-Statistics”, J. Multivariate Anal. 117, 257–280 (2013b).

    Article  MathSciNet  MATH  Google Scholar 

  34. D. M. Mason and M. A. Newton, “A Rank Statistics Approach to the Consistency of a General Bootstrap”, Ann. Statist. 20(3), 1611–1624 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. H. Neumann, “Absolute Regularity and Ergodicity of Poisson Count Processes”, Bernoulli 17(4), 1268–1284 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Pauly, “Weighted Resampling ofMartingale Difference Arrays with Applications”, Electron._J. Statist. 5, 41–52 (2011).

    MathSciNet  MATH  Google Scholar 

  37. M. Pauly, “Consistency of the Subsample Bootstrap Empirical Process”, Statistics 46(5), 621–626 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Præstgaard and J. A. Wellner, “Exchangeably Weighted Bootstraps of the General Empirical Process”, Ann. Probab. 21(4), 2053–2086 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  39. J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd ed., Springer Series in Statistics. Springer, New York, 2nd ed. (2005).

    Book  MATH  Google Scholar 

  40. J. Shao and D. S. Tu, The Jackknife and Bootstrap, in Springer Series in Statistics (Springer-Verlag, New York, 1995).

    Book  Google Scholar 

  41. A. van der Vaart, “New Donsker Classes”, Ann. Probab. 24(4), 2128–2140 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes (With Applications to Statistics), in Springer Series in Statistics (Springer-Verlag, New York, 1996).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bouzebda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzebda, S., Chaouch, M. & Laïb, N. Limiting law results for a class of conditional mode estimates for functional stationary ergodic data. Math. Meth. Stat. 25, 168–195 (2016). https://doi.org/10.3103/S1066530716030029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530716030029

Keywords

2000 Mathematics Subject Classification

Navigation