Skip to main content
Log in

Exponential bounds for intensity of jumps

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this paper, we study intensity of jumps in the context of functional linear processes. The natural space for that is the space D = D[0, 1] of cadlag real functions. We begin with limit theorems for ARMA D(1,1) processes. It appears that under some conditions, the functional linear process and its innovation have the same jumps. This nice property allows us to focus on the case of i.i.d. D-valued random variables. For such variables, we estimate the intensity of jumps in various situations: fixed number of jumps, random instants of jumps, random number of instants of jumps, etc. We derive exponential rates and limits in distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Antoniadis, X. Brossat, J. Cugliari, and J.-M. Poggi, “Prévision d’un processusà valeurs fonctionnelles en présence de non stationnarités. Applicationà la consommation d’électricité”, J.SFdS 153(2), 52–78 (2012).

    MathSciNet  Google Scholar 

  2. P. Besse, H. Cardot, and D. Stephenson, “Autoregressive Forecasting of Some Climatic Variation”, Scandinavian J. Statist. 27(4), 673–687 (2000).

    Article  MATH  Google Scholar 

  3. P. Billingsley, Convergence of Probability Measures, 2nd ed. in Wiley Series in Probab. and Statist.: Probab. and Statist. (Wiley, New York, 1999).

    Book  MATH  Google Scholar 

  4. D. Blanke and D. Bosq, “Observing Jumps in Discrete Time. Applications”, (2014) (in press).

    Google Scholar 

  5. M. Bloznelis and V. Paulauskas, “On the Central Limit Theorem in D[0, 1]”, Statist. Probab. Lett. 17(2), 105–111 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Bosq, “Estimating and Detecting Jumps. Applications to D[0,1]-Valued Linear Processes”, in Festschrift in Honor of Paul Deheuvels (Springer, 2014) (in press).

    Google Scholar 

  7. R. C. Bradley, Introduction to Strong Mixing Conditions (Kendrick Press, Heber City, UT, 2007), Vols. 1–3.

    Google Scholar 

  8. H. Cardot, “Convergence du lissage spline de la prévision des processus autorégressifs fonctionnels”, C. R. Acad. Sci. Paris Sér. I Math. 326(6), 755–758 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Cont and P. Tankov, Financial Modelling with Jump Processes in Chapman & Hall/CRC Financial Mathematics Series (Chapman & Hall/CRC, Boca Raton, FL, 2004).

    Google Scholar 

  10. P. Z. Daffer and R. L. Taylor, “Laws of large numbers for D[0, 1]”, Ann. Probab. 7(1), 85–95 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Damon and S. Guillas, “Estimation and Simulation of Autoregressive Hilbert Processes with Exogenous Variables”, Statist. Inference Stoch. Process. 8(2), 185–204 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Descartes, La Géométrie, Livre Troisième (Jan Maire, Leyden, 1637).

  13. L. El Hajj, “Théorèms limites pour les processus autorégressifsà valeurs dans D[0, 1]”, C. R. Math. Acad. Sci. Paris 349(13–14), 821–825 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. El Hajj, Théorèmes limites pour les processus autorégressifs à valeurs dans D[0, 1], Ph.D. Thesis (Université Paris 6, Paris, 2013).

    Google Scholar 

  15. F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice, in Springer Series in Statistics (Springer, New York, 2006).

    Google Scholar 

  16. S. M. Garba, A. B. Gumel, and M. R. Abu Bakar, “Backward Bifurcations in Dengue Transmission Dynamics”, Math. Biosci. 215(1), 11–25 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Jacq, P. Albert, and R. Delorme, “Le mistral. Quelques aspects des connaissances actuelles”, La météorologie 50, 30–38 (2005).

    Google Scholar 

  18. V. Kargin and A. Onatski, “Curve Forecasting by Functional Autoregression”, J. Multivar. Anal. 99(10), 2508–2526 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. M. Marion and B. Pumo, “Comparaison des modèles ARH(1) et ARHD(1) sur des données physiologiques”, Ann. I.S.U.P. 48(3), 29–38 (2004).

    MathSciNet  MATH  Google Scholar 

  20. A. Mas, “Consistance du prédicteur dans le modèle ARH(1): le cas compact”, Ann. I.S.U.P. 48(3), 39–48 (2004).

    MathSciNet  MATH  Google Scholar 

  21. T. Mourid, “Estimation and Prediction of Functional Autoregressive Processes”, Statistics 36(2), 125–138 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Y. Pan, “Solving a Polynomial Equation: Some History and Recent Progress”, SIAM Rev. 39(2), 187–220 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. W. R. Pestman, “Measurability of Linear Operators in the Skorokhod Topology”, Bull. Belg. Math. Soc. Simon Stevin 2(4), 381–388 (1995).

    MathSciNet  MATH  Google Scholar 

  24. B. Pumo, “Prediction of Continuous Time Processes by C [0,1]-Valued Autoregressive Process”, Statist. Inference Stoch. Process. 1(3), 297–309 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. D. Ruiz-Medina, “Spatial Functional Prediction from Spatial Autoregressive Hilbert Processes”, Environmetrics 23(1), 119–128 (2012).

    Article  MathSciNet  Google Scholar 

  26. A. N. Shiryaev, Probability, 2nd ed. in Graduate Texts in Mathematics (Springer-Verlag, New York, 1996), Vol. 95.

    Book  Google Scholar 

  27. P. Tankov and E. Voltchkova, “Jump-Diffusion Models: a Practitioners Guide”, Banque et Marchés 99, 1–24 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Blanke.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanke, D., Bosq, D. Exponential bounds for intensity of jumps. Math. Meth. Stat. 23, 239–255 (2014). https://doi.org/10.3103/S1066530714040012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530714040012

Keywords

2000 Mathematics Subject Classification

Navigation