Skip to main content
Log in

Characterization of Cr Coating Obtained on Micrometer-Scale Diamond Particles Prepared by Molten Salt Method

  • SYNTHESIS, STRUCTURE, AND PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The surface metallization can improve the wettability of the diamond particles and the metal matrix, which leads to large enhancement of the thermal conductivity of the composites. In this paper, chromium coatings obtained by molten salts method onto micrometer-scale diamond particles were used to modify the diamond’s surface topography. The influence of process parameters on the structure and morphology of the coating was investigated. The characteristics of coating were investigated by Scanning Electron Microscopy (SEM), Energy Disperse Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Atomic Force Microscope (AFM). Part of the samples were ground and the thickness of the coating was measured by scanning electron microscope. The results show that, high deposition rate of chromium on diamond surface is obtained by molten salt. Integrated coating is formed when the content of Cr reaches 6% and the time of salt bath is beyond 40 min. Increasing the temperature of the molten salt method, up to 950°C, the probability of cracks on the coatings surface is reduced. Graphite can be detected when the heating temperature reaches 1050°C. When 6–10% Cr is added to salt mixture and heated to 950°C, integrated coating with excellent interface bonding can be achieved, and thickness of the coating film ranges from 312 to 826 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Tan, Z., Chen, Z., Fan, G., Ji, G., Zhang, J., Xu, R., Shan, A., Li, Z., and Zhang, D., Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond, Mater. Des., 2016, vol. 22, pp. 845–851.

    Article  Google Scholar 

  2. Xie, Z., Guo, H., Zhang, X., and Huang, S., Enhancing thermal conductivity of Diamond/Cu composites by regulating distribution of bimodal diamond particles, Diamond Relat. Mater., 2019, vol. 100, 107564.

  3. Yao, K., Dai, B., and Zhu, J., Diamond micropowder synthesis via graphite etching in a microwave hydrogen plasma, Powder Technol., 2017, vol. 67, pp. 124–130.

    Article  Google Scholar 

  4. Chen, C., Li, X., and Wen, Y., Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: a promising strategy for enhancing thermal conductivity of epoxy composites, Composites, Part A, 2019, vol. 125, 105517.

  5. Li, N., Wang, L., and Dai, J., Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles, Diamond Relat. Mater., 2019, vol. 100, pp. 107565–107574.

    Article  CAS  Google Scholar 

  6. Chu, K., Wu, Q., Jia, C., Liang, X., Nie, J., Tian, W., Gai, G., and Guo, H., Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications, Compos. Sci. Technol., 2009, vol. 70, pp. 298–304.

    Article  Google Scholar 

  7. Chu, K., Liu, Z., and Jia, C., Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles, J. Alloys Compd., 2009, vol. 490, pp. 453–458.

    Article  Google Scholar 

  8. Wei, Q., Yu, Z.M., Ashfold, M.N.R., Ye, J., and Ma, L., Synthesis of micro- or nano-crystalline diamond films on WC–Co substrates with various pretreatments by hot filament chemical vapor deposition, Appl. Surf. Sci., 2010, vol. 256, pp. 4357–4364.

    Article  CAS  Google Scholar 

  9. Dai, S., Li, J., and Lu, N., Research progress of diamond/copper composites with high thermal conductivity, Diamond Relat. Mater., 2020. vol. 108, 107993.

  10. Abyzov, A.M., Kidalov, S.V., and Shakhov, F.M., High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix, J. Mater. Sci., 2011, vol. 46, pp. 1424–1438.

    Article  CAS  Google Scholar 

  11. Yoshida, K. and Morigami, H., Thermal properties of diamond/copper composite material, Microelectron. Reliab., 2004, vol. 44, pp. 303–308.

    Article  CAS  Google Scholar 

  12. Schubert, T., Ciupiński, Ł., Zieliński, W., Michalski, A., Weißgärber, T., and Kieback, B., Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications, Scr. Mater., 2007, vol. 58, pp. 263–266.

    Article  Google Scholar 

  13. Flaquer, J., Ríos, A., and Martín-Meizoso, A., Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites, Comput. Mater. Sci., 2007, vol. 41, pp. 156–163.

    Article  CAS  Google Scholar 

  14. Zhu, C., Zhao, H., Fa, W., and Zheng, Z., Processing of diamond particle reinforced silicon (Ti) matrix composites by in-situ reactive sintering and their thermal properties, Ceram. Int., 2014, vol. l40, pp. 7467–7472.

  15. Yuan, M., Tan, Z., Fan, G., Xiong, D.-B., Guo, Q., Guo, C., Li, Z., and Zhang, D., Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites, Diamond Relat. Mater., 2018, vol. 81, pp. 38–44.

    Article  CAS  Google Scholar 

  16. Ren, S., Shen, X., Guo, C., Liu, N., Zang, J., He, X., and Qu, X., Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy, Compos. Sci. Technol., 2011, vol. 71, pp. 1550–1555.

    Article  CAS  Google Scholar 

  17. Pan, Y., He, X., Ren, S., Wu, M., and Qu, X., Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique, Vacuum, 2018, vol. 153, pp. 74–81.

    Article  CAS  Google Scholar 

  18. Zhang, C., Wang, R., Cai, Z., Peng, C., Feng, Y., and Zhang, L., Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol., 2015, vol. 277, pp. 299–307.

    Article  CAS  Google Scholar 

  19. Peining, Z., Yongzhi, W., Reddy, M.V., Nair, A.S., Shengjie, P., Sharma, N., Peterson, V.K., Chowdari, B.V.R., and Ramakrishna, S., TiO2 nanoparticles synthesized by the molten salt method as a dual functional material for dye-sensitized solar cells, RSC Adv., 2012, vol. 2, pp. 5123–5126.

    Article  Google Scholar 

  20. Reddy, M.V., Beichen, Z., Nicholette, L.J., Kaimeng, Z., and Chowdari, B.V.R., Molten salt synthesis and its electrochemical characterization of Co3O4 for lithium batteries, Electrochem. Solid-State Lett., 2011, vol. 14, pp. A79–A82.

    Article  CAS  Google Scholar 

  21. Cherian, C.T., Sundaramurthy, J., Reddy, M.V., Kumar, P.S., Mani, K., Pliszka, D., Sow, C.H., Ramakrishna, S., and Chowdari, B.V.R., Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material, ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 9957–9963.

    Article  CAS  Google Scholar 

  22. Wei, C., Cheng, J., Li, J., Chen, W., Chen, P., Luo, L., and Liu, J., Tungsten-coated diamond powders prepared by microwave-heating salt-bath plating, Powder Technol., 2018, vol. 338, pp. 274–279.

    Article  CAS  Google Scholar 

  23. Pimenov, S.M., Shafeev, G.A., and Konov, V.I., Electroless metallization of diamond films, Diamond Relat. Mater., 1996, vol. 5, pp. 1042–1047.

    Article  CAS  Google Scholar 

  24. Zhu, Y., Wang, L., Yao, W., and Cao, L., The interface diffusion and reaction between Cr layer and diamond particle during metallization, Appl. Surf. Sci., 2001, vol. 171, pp. 143–150.

    Article  CAS  Google Scholar 

  25. Zhao, C. and Wang, J., Enhanced mechanical properties in diamond/Cu composites with chromium carbide coating for structural applications, Mater. Sci. Eng., A, 2013, vol. 588, pp. 221–227.

    Article  CAS  Google Scholar 

  26. Ciupiński, Ł., Kruszewski, M.J., and Grzonka, J., Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications, Mater. Des., 2017, vol. 120, pp. 170–185.

    Article  Google Scholar 

  27. Weber, L. and Tavangar, R., On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites, Scr. Mater., 2007, vol. 57, pp. 988–991.

    Article  CAS  Google Scholar 

  28. Kang, Q., He, X., Ren, S., Zhang, L., Wu, M., Guo, C., Cui, W., and Qu, X., Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications, Appl. Therm. Eng., 2013, vol. 60, pp. 423–429.

    Article  CAS  Google Scholar 

  29. Shen, X.Y., He, X.B., Ren, S.B., Zhang, H.M., and Qu, X.H., Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites, J. Alloys Compd., 2012, vol. 529, pp. 134–139.

    Article  CAS  Google Scholar 

  30. Ma, S., Zhao, N., Shi, C., Liu, E., He, C., He, F., and Ma, L., Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 2017, vol. 402, pp. 372–383.

    Article  CAS  Google Scholar 

  31. Jia, J., Bai, S., Xiong, D., Wang, J., and Chang, J., Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressureless infiltration, Ceram. Int., 2019, vol. 45, pp. 10810–10818.

    Article  CAS  Google Scholar 

  32. Xue, C. and Yu, J.K., Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface, Surf. Coat. Technol., 2013, vol. 217, pp. 46–50.

    Article  CAS  Google Scholar 

  33. Dong, Y.H., Zhang, R.Q., He, X.B., and Qu, X.H., Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration, Mater. Sci. Eng., B, 2012, vol. 177, pp. 1524–1530.

    Article  CAS  Google Scholar 

  34. Qu, X., Zhang, L., Wu, M., and Ren, S., Review of metal matrix composites with high thermal conductivity for thermal management applications, Prog. Nat. Sci.: Mater. Int., 2011, vol. 21, pp. 189–197.

    Article  Google Scholar 

  35. Schubert, Th., Trindade, B., Weißgärber, T., and Kieback, B., Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng., A, 2006, vol. 475, pp. 39–44.

    Article  Google Scholar 

  36. Li, J., Wang, X., Qiao, Y., Zhang, Y., He, Z., and Zhang, H., High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites, Scr. Mater., 2015, vol. 109, pp. 72–75.

    Article  CAS  Google Scholar 

  37. Wang, L., Li, J., Che, Z., Wang, X., Zhang, H., Wang, J., and Kim, M.J., Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites, J. Alloys Compd., 2018, vol. 749, pp. 1098–1105.

    Article  CAS  Google Scholar 

  38. Wang, L., Li, J., Catalano, M., Bai, G., Li, N., Dai, J., Wang, X., Zhang, H., Wang, J., and Kim, M.J., Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer, Composites, Part A, 2018, vol. 113, pp. 76–82.

    Article  CAS  Google Scholar 

  39. Tan, Z., Li, Z., Xiong, D.B., Fan, G., Ji, G., and Zhang, D., A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites, Mater. Des., 2014, vol. 55, pp. 257–262.

    Article  CAS  Google Scholar 

  40. Li, J., Zhang, H., Zhang, Y., Che, Z., and Wang, X., Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration, J. Alloys Compd., 2015, vol. 647, pp. 941–946.

    Article  CAS  Google Scholar 

  41. Che, Q.L., Chen, X.K., Ji, Y.Q., Li, Y.W., and Wang, L.X., The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering, Mater. Sci. Semicond. Process., 2015, vol. 30, pp. 104–111.

    Article  CAS  Google Scholar 

  42. Liu, X., Sun, F., Wang, L., Wu, Z., Wang, X., Wang, J., Kim, M.J., and Zhang, H., The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 2020, vol. 515, 146046.

  43. Lide, D.R., CRC Handbook of Chemistry and Physics, New York: CRC, 2006, 87th еd.

    Google Scholar 

  44. Zhao, Y., Wei, L., Yi, P., and Peng, L., Influence of Cr–C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1142–1150.

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Qingzhu Ge and Meng Yan contributed equally to this work.

Corresponding author

Correspondence to Junwu Liu.

Ethics declarations

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Q., Yan, M., Jiang, Y. et al. Characterization of Cr Coating Obtained on Micrometer-Scale Diamond Particles Prepared by Molten Salt Method. J. Superhard Mater. 44, 393–404 (2022). https://doi.org/10.3103/S106345762206003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345762206003X

Keywords:

Navigation