Skip to main content
Log in

Microstructure and Mechanical Properties of c-BN Reinforced (Ti,W)C-Based Cermet Tool Materials

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

(Ti,W)C-based cement tool materials with c-BN particles as additive phase are fabricated by the hot press sintering. The effect of c-BN addition on the microstructure and mechanical properties of (Ti,W)C-based cement tool materials are investigated. With the addition of c-BN, the fracture mode of composite transform from intergranular to transgranular fracture. The main toughening mechanism is particle bridging, crack deflection and crack bifurcation, which improve the fracture toughness of cement tool material. The proper addition of c-BN can improve the mechanical properties of the composites. When the content of c-BN is 1.5 wt %, (Ti,W)C-based cement tool materials reaches the optimum comprehensive mechanical properties. The hardness, the flexural strength and the fracture toughness is 19.78 GPa, 987 MPa and 9.44 MPa m1/2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aramian, A., Mohammad, J.R.S., Sadeghian, Z., and Berto, F., A review of additive manufacturing of cermets, Addit. Manuf., 2020, vol. 33, pp. 1–17.

    Google Scholar 

  2. Buchholz, S., Farhat, Z.N., Kipouros, G.J., and Plucknett, K.P., The reciprocating wear behavior of TiC–Ni3Al cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 33, pp. 44–52.

    Article  CAS  Google Scholar 

  3. Daoush, W.M., Lee, K.H., Park, H.S., and Hong, S.H., Effect of liquid phase composition on the microstructure and properties of (W,Ti)C cemented carbide cutting tools, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 1, pp. 83–89.

    Article  CAS  Google Scholar 

  4. Nam, H., Lim, J., and Kang, S., Microstructure of (W,Ti)C–Co system containing platelet WC, Mater. Sci. Eng., A, 2010, vol. 527, nos. 27–28, pp. 7163–7167.

    Article  Google Scholar 

  5. Lin, Z., Xiong, J., Guo, Z., Zhou, W., Wan, W., and Yang, L., Effect of Mo2C addition on the microstructure and fracture behavior of (W,Ti)C-based cemented carbides, Ceram. Int., 2014, vol. 40, no. 10, pp. 16421–16428.

    Article  CAS  Google Scholar 

  6. Chen, X., Xiong, W., Qu, J., Yang, Q., Yao, Z., and Huang, Y., Microstructure and mechanical properties of (Ti,W,Ta)C-xMo-Ni cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 56–61.

    Article  Google Scholar 

  7. Prokopiv, N.M., Kharchenko, O.V., Tkach, S.V., Vasilenko, L.E., Prokopiv, N.N., Serdyuk, Y.D., and Semizhon, O.A., The influence of thermal-compression treatment under argon pressure of 3.0 MPa on microstructure of standard (Ti, W)C–WC–10Co hardmetal, J. Superhard Mater., 2011, vol. 33, no. 5, pp. 320–326.

    Article  Google Scholar 

  8. Serdyuk, Y.D., Semizhon, O.A., Prokopiv, N.M., Petasyuk, G.A., Kharchenko, O.V., and Omel’chuk, T.V., The influence of thermal compression treatment parameters on quality characteristics and wear mechanisms of T5K10 carbide inserts in rough turning, J. Superhard Mater., 2011, vol. 33, no. 2, pp. 120–128.

    Article  Google Scholar 

  9. Prokopiv, M.M., A new phenomenon in the structure formation of T5K10 hard alloy, J. Superhard Mater., 2018, vol. 40, no. 1, pp. 73–74.

    Article  Google Scholar 

  10. Prokopiv, M.M., A study of new phase of elongated shape in granular structure of WC–(Ti,W)C–Co cemented carbide after its solid-phase annealing, Int. J. Refract. Met. Hard Mater., 2020, vol. 93, 105349.

    Article  CAS  Google Scholar 

  11. Prokopiv, M., Metallographic studies of extra elongated inclusions in WC–(Ti,W)C–Co hard alloy structure, J. Mater. Sci. Appl., 2019, Vol. 5, no. 2, pp. 29–34.

    Google Scholar 

  12. Prokopiv, M.M., Formation of layer WC–(Co,Ni,Al) structure on the cutting plate surface of WC–7(W,Ti)C–10Co cemented carbide in the contact area with Ni3Al melt, J. Superhard Mater., 2019, vol. 41, no. 3, pp. 149–156.

    Article  Google Scholar 

  13. Kwon, H., Suh, C.Y., and Kim, W., Microstructure and mechanical properties of (Ti,W)C–Ni cermet prepared using a nano-sized TiC–WC powder mixture, J. Alloy Compd., 2015, vol. 639, pp. 21–26.

    Article  CAS  Google Scholar 

  14. Zhang, G., Xiong, W., Yang, Q., Yao, Z., Chen, S., and Chen, X., Effect of Mo addition on microstructure and mechanical properties of (Ti,W)C solid solution based cermets, Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 77–82.

    Article  Google Scholar 

  15. Qu, J., Xiong, W., Ye, D., Yao, Z., Liu, W., and Lin, S., Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)–WC–Mo–Ni cermets, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, no. 2, pp. 243–249.

    Article  CAS  Google Scholar 

  16. Jung, J. and Kang, S., Sintered (Ti,W)C carbides, Scr. Mater., 2007, vol. 56, no. 7, pp. 561–564.

    Article  CAS  Google Scholar 

  17. Xiong, H., Guo, Y., Li, Z., and Zhou, K., New production of (Ti,W)C-based cermets toughened by in-situ formed WC and twinned (Ti,W)C platelets: Carbonization of the Nix(Ti0.6,W0.4)4C-type η phases, J. Alloy Compd., 2018, vol. 731, pp. 253–263.

    Article  CAS  Google Scholar 

  18. Zhao, B., Liu, H., Huang, C., Wang, J., and Cheng, M., Fabrication and mechanical properties of Al2O3–SiCw–TiCnp ceramic tool material, Ceram. Int., 2017, vol. 43, no. 13, pp. 10224–10230.

    Article  CAS  Google Scholar 

  19. Liu, X., Liu, H., Huang, C., Zhao, B., and Zheng, L., High temperature mechanical properties of Al2O3-based ceramic tool material toughened by SiC whiskers and nanoparticles, Ceram. Int., 2017, vol. 43, no. 1, pp. 1160–1165.

    Article  CAS  Google Scholar 

  20. Tian, X., Zhao, J., Zhu, N., Dong, Y., and Zhao, J., Preparation and characterization of Si3N4/(W,Ti)C nano-composite ceramic tool materials, Mater. Sci. Eng., A, 2014, vol. 596, pp. 255–263.

    Article  CAS  Google Scholar 

  21. Rafiaei, S.M., Kim, J.H., and Kang, S., Effect of nitrogen and secondary carbide on the microstructure and properties of (Ti0.93W0.07)C–Ni cermets, Int. J. Refract. Met. Hard Mater., 2014, vol. 44, pp. 123–128.

    Article  CAS  Google Scholar 

  22. Song, J., Huang, C., Zou, B., Liu, H., and Wang, J., Microstructure and mechanical properties of TiB2–TiC–WC composite ceramic tool materials, Mater. Des., 2012, vol. 36, pp. 69–74.

    Article  CAS  Google Scholar 

  23. Xie, Y. and Koslowski, M., Numerical simulations of inter-laminar fracture in particle-toughened carbon fiber reinforced composites, Composites, Part A, 2017, vol. 92, pp. 62–69.

    Article  CAS  Google Scholar 

  24. Kang, X., Lin, N., He, Y., and Zhang, M., Influence of ZrC addition on the microstructure, mechanical properties and oxidation resistance of Ti(C,N)-based cermets, Ceram. Int., 2018, vol. 44, no. 10, pp. 11151–11159.

    Article  CAS  Google Scholar 

  25. Li, Y., Liu, N., Zhang, X., and Rong, C., Effect of WC content on the microstructure and mechanical properties of (Ti,W)(C, N)–Co cermets, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, no. 1, pp. 33–40.

    Article  CAS  Google Scholar 

  26. Sandoval, D.A., Roa, J.J. Ther, O., Tarrés, E., and Llanes, L., Micromechanical properties of WC–(W,Ti,Ta,Nb)C–Co composites, J. Alloy Compd., 2019, vol. 777, pp. 593–601.

    Article  CAS  Google Scholar 

  27. Klimczyk, P., Cura, M.E., Vlaicu, A.M., Mercioniu, I., Wyżga, P., Jaworska, L., and Hannula, S.P., Al2O3–cBN composites sintered by SPS and HPHT methods, J. Eur. Ceram. Soc., 2016, vol. 36, no. 7, pp. 1783–1789.

    Article  CAS  Google Scholar 

  28. Hotta, M. and Goto, T., Densification and microstructure of Al2O3–cBN composites prepared by spark plasma sintering, J. Ceram. Soc. Jpn., 2008, vol. 116, no. 6, pp. 744–748.

    Article  CAS  Google Scholar 

  29. Hotta, M. and Goto, T., Densification and phase transformation of β-sialon–cubic boron nitride composites prepared by spark plasma sintering, J. Am. Ceram. Soc., 2009, vol. 92, no. 8, pp. 1684–1690.

    Article  CAS  Google Scholar 

  30. Hotta, M. and Goto, T., Spark plasma sintering of TiN–cubic BN composites, J. Ceram. Soc. Jpn., 2010, vol. 118, no. 2, pp. 137–140.

    Article  CAS  Google Scholar 

  31. Turkevich, D., Bushlya, V., Petrusha, I., Belyavina, N., Turkevich, V., and Ståhl, J.-E., HP-HT sintering, microstructure, and properties of B6O- and TiC-containing composites based on cBN, J. Superhard Mater., 2015, vol. 37, pp. 143–154.

    Article  Google Scholar 

  32. Slipchenko, K.V., Petrusha, I.A., Stratiichuk, D.A., and Turkevych, V.Z., The influence of VC–Al additive on wear resistance of cBN-based composites, J. Superhard Mater., 2018, vol. 40, no. 3, pp. 226–227.

    Article  Google Scholar 

  33. Zhang, J., Tu, R., and Goto, T., Spark plasma sintering and characterization of WC–Co–cBN composites, Key Eng. Mater., 2014, vol. 616, pp. 194–198.

    Article  CAS  Google Scholar 

  34. Chiou, S.Y., Ou, S.F., Jang, Y.G., and Ou, K.L., Research on CBN/TiC composites, Part 1: Effects of the cBN content and sintering process on the hardness and transverse rupture strength, Ceram. Int., 2013, vol. 39, no. 6, pp. 7205–7210.

    Article  CAS  Google Scholar 

  35. Zhang, H., Gu, S., and Yi, J., Fabrication and properties of Ti(C,N) based cermets reinforced by nano-CBN particles, Ceram. Int., 2012, vol. 38, no. 6, pp. 4587–4591.

    Article  CAS  Google Scholar 

  36. Klimczyk, P., Cura, M.E., Vlaicu, A.M., Mercioniu, I., Wyżga, P., Jaworska, L., and Hannula, S.P., Al2O3–cBN composites sintered by SPS and HPHT methods, J. Eur. Ceram. Soc., 2016, vol. 36, no. 7, pp. 1783–1789.

    Article  CAS  Google Scholar 

  37. Fang, B., Li, D., Yi, M., Zhang, G., Xiao, G., Chen, Z., Zhang, J., and Xu, C., Effect of c-BN surface modification on the microstructure and mechanical properties of (Ti,W)C-based cermet tool materials, Ceram. Int., 2020, vol. 46, no. 8, pp. 12145–12155.

    Article  CAS  Google Scholar 

  38. Schubert, W.D., Neumeister, H., Kinger, G., and Lux, B., Hardness to toughness relationship of fine-grained WC–Co hard metals, Int. J. Refract. Met. Hard Mater., 1998, vol. 16, pp. 133–142.

    Article  CAS  Google Scholar 

  39. Blikstein, P. and Tschiptschin, A.P., Monte Carlo simulation of grain growth, Mater. Res., 1999, vol. 2, no. 3, pp. 133–137.

    Article  CAS  Google Scholar 

  40. Gottstein, G., Ma Y., and Shvindlerman, L., Triple junction motion and grain microstructure evolution, Acta Mater., 2005, vol. 53, no. 5, pp. 1535–1544.

    Article  CAS  Google Scholar 

  41. Miodownik, M., Martin, J.W., and Cerezo, A., Mesoscale simulation of particle pinning, Philos. Mag. A, 1999, vol. 79, no. 1, pp. 203–222.

    Article  CAS  Google Scholar 

  42. Sterns, L. and Harmer, M., Particle-inhibited grain growth in Al2O3–SiC. I. Experimental results, J. Am. Ceram. Soc., 1996, vol. 79, no. 12, pp. 3013–3019.

    Article  Google Scholar 

  43. Upadhyaya, G.S., Materials science of cemented carbides-an overview, Mater. Des., 2001, vol. 22, pp. 483–489.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (projects no. 51675289 and 52075275), Agricultural Key Applied Project of China (no. SD2019NJ015) and Project for the Innovation Team of Universities and Institutes in Jinan of China (no. 2018GXRC005).

Author information

Authors and Affiliations

Authors

Contributions

Bin Fang: methodology, conceptualization, writing (review and editing), data curation, and general supervision. Zhonghang Yuan: writing (original draft). Depeng Li: resources, writing (review and editing), and data curation. Yuanbin Zhang: writing (editing).

Corresponding author

Correspondence to Bin Fang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin Fang, Yuan, Z., Gao, L. et al. Microstructure and Mechanical Properties of c-BN Reinforced (Ti,W)C-Based Cermet Tool Materials. J. Superhard Mater. 43, 415–422 (2021). https://doi.org/10.3103/S1063457621060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621060046

Keywords:

Navigation