Skip to main content
Log in

Friction-Wear Behaviors of Chemical Vapor Deposited Diamond Films at High Temperatures

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A diamond film was deposited on YT14 hard alloy cutting tool using a chemical vapor deposition. The coefficients of friction and wear behaviors of the obtained diamond films at 500, 600, and 700°C were investigated using a high temperature tribological tester. The results show that the C of diamond film is fully released at 700°C, generating CO and CO2. The (220) plane of diamond film is oxidized fully at 500°C, while the (110) plane of diamond film is oxidized at 700°C. The average coefficients of friction of diamond film at 500, 600 and 700°C are 0.55, 0.49, and 0.48, respectively, the wear mechanism is primarily oxidation wear, adhesive wear and abrasive wear, accompanied with fatigue wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, R.H., Miao, J.Y., Liu, J.L., Chen, L.X., Guo, J.C., Hua, C.Y., Ding, T., Lian, H.K., and Li, C.M., High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD, Diamond Relat. Mater., 2014, vol. 50, pp. 55–59.

    Article  CAS  Google Scholar 

  2. Wei. Q.P., Yu. Z.M., Ashfold. M.N.R., Ye. J., and Ma, L., Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition, Appl. Surf. Sci., 2010, vol. 256, no. 13, pp. 4357–4364.

    Article  CAS  Google Scholar 

  3. Vasconcellos de Siqueira Brandão, L.E., Michels, A.F., Camargo, K.C., Balzaretti, N.M., and Horowitz, F., Wet ability of PTFE coated diamond films, Surf. Coat. Technol., 2013, vol. 232, pp. 384–388.

    Article  CAS  Google Scholar 

  4. Nasiekaa, I., Strelchuk, V., Boyko, M., Voevodin, V., Vierovkin, A., Rybka, A., Kutniy, V., Dudnik, S., Gritsina, V., Opalev, O., and Strel’nitskij, V., Raman and photoluminescence characterization of diamond films forradiation detectors, Sens. Actuators A: Phys., 2015, vol. 223, pp. 18–23.

    Article  CAS  Google Scholar 

  5. Morales, J., Apátiga, L.M., and Castaño, V.M., Synthesis of diamond films from organic compounds by pulsed liquid injection CVD, Surf Coat Technol., 2008, vol. 203, no. 5, pp. 610–613.

    Article  CAS  Google Scholar 

  6. Long, H.Y., Luo, H., Luo, J.Q., Xie, Y.N., Deng, Z.J., Zhang, X.W., Wang, Y.J., Wei, Q.P., and Yu, Z.M., The concentration gradient of boron along the growth direction in boron doped chemical vapor deposited diamond, Mater. Lett., 2015, vol. 157, pp. 34–37.

    Article  CAS  Google Scholar 

  7. Long, H.Y., Li, S., Luo, H., Wang, Y.J., Weia, Q.P., and Yu, Z.M., The effect of periodic magnetic field on the fabrication and field emission properties of nanocrystalline diamond films, Appl. Surf. Sci., 2015, vol. 353, pp. 548–552.

    Article  CAS  Google Scholar 

  8. Liu, M.N., Bian, Y.B., Zheng, S.J., Zhu, T., Chen, Y.G., Chen, Y.L., and Wang, J.S., Growth and mechanical properties of diamond films on cemented carbide with buffer layers, Thin Solid Films, 2015, vol. 584, pp. 165–169.

    Article  CAS  Google Scholar 

  9. Iyuke, S.E., Daramola, M.O., Mokena, P., and Marshall, A., Thermodynamic stability of graphitic diamond films produced from catalytic chemical vapor deposition reactor, J. Ind. Eng. Chem., 2015, vol. 30, pp. 336–341.

    Article  CAS  Google Scholar 

  10. Cui, Y., Zhang, J.G., Sun, F.H., and Zhang, Z.M., Si-doped diamond films prepared by chemical vapor deposition, Trans. Nonfer. Met. Soc. China, 2013, vol. 23, no. 10, pp. 2962–2970.

    Article  CAS  Google Scholar 

  11. Catena, A., McJunkin, T., Agnello, S., Gelardi, F.M., Wehner, S., and Fischer, C.B., Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C: H) on silicon, Appl. Surf. Sci., 2015, vol. 347, pp. 657–667.

    Article  CAS  Google Scholar 

  12. Benarioua, Y., Lesage, J., Chicot, D., and Moisan M., Structure and hardness of diamond films deposited on WC-Co by CVD technique, Surf. Coat. Technol., 2013, vol. 227, no. 29, pp. 70–74.

    Article  CAS  Google Scholar 

  13. Pu, J.C., Wang, S.F., and Sung, J.C., High-temperature oxidation behaviors of CVD diamond films, Appl. Surf. Sci., 2009, vol. 256, no. 3, pp. 668–673.

    Article  CAS  Google Scholar 

  14. Maida, O., Tada, S., Nishio, H., and Ito, T., Substrate temperature optimization for heavily-phosphorus-doped diamond films grown on vicinal (001) surfaces using high-power-density microwave-plasma chemical-vapor-deposition, J. Cryst Growth, 2015, vol. 424, pp. 33–37.

    Article  CAS  Google Scholar 

  15. Huang, K., Hu, X.J., Xu, H., Shen, Y.G., and Khomich A., The oxidization behavior and mechanical properties of ultrananocrystalline diamond films at high temperature annealing, Appl. Surf. Sci., 2014, vol. 317, pp. 11–18.

    Article  CAS  Google Scholar 

  16. Qian, J., McMurray, C.E., Mukhopadhyay, D.K., Wiggins, J.K., Vail, M.A., and Bertagnolli, K.E., Polycrystalline diamond cutters sintered with magnesium carbonate in cubic anvil press, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, no. 3, pp. 71–75.

    Article  CAS  Google Scholar 

  17. Konicek, A.R., Grierson, D.S., Gilbert, P.U.P.A, Sawyer, W.G., Sumant, A.V., and Carpick, R.W., Origin of ultralow friction and wear in ultrananocrystalline diamond, Phys. Rev. Lett., 2008, vol. 23, no. 100, pp. 1151–1156.

    Google Scholar 

  18. Sun, X.F., Qiao, Y.L., Song, W., Ma, S.N., and Hu, C.H., High temperature tribological properties of modified nanodiamond additive in lubricating oil, Phys. Procedia, 2013, vol. 50, pp. 343–347.

    Article  CAS  Google Scholar 

  19. Shabani, M., Abreu, C.S., Gomes, J.R., Silva, R.F., and Oliveira, F.J., Effect of relative humidity and temperature on the tribology of multilayer micro/nanocrystalline CVD diamond coatings, Diamond Relat Mater., 2017, vol. 73, pp. 190–198.

    Article  CAS  Google Scholar 

  20. Liu, S., Liu, J.L., Li, C.M., Guo, J.C., Chen, L.X., Wei, J.J., Hei, L.F., and Lu, F.X., The mechanical enhancement of chemical vapor deposited diamond film by plasma low-pressure/high-temperature treatment, Carbon, 2013, vol. 65, no. 12, pp. 365–370.

    Article  CAS  Google Scholar 

  21. Ueda, K., Kasu, M., Tallaire, A., and Makimoto T., High-pressure and high-temperature annealing effects on CVD homoepitaxial diamond films, Diamond Relat. Mater., 2006, vol. 15, no. 11–12, pp. 1789–1791.

    Article  CAS  Google Scholar 

  22. Liu, J.M. and Lv, X., Oxidation behavior of high quality freestanding diamond films, Trans. Mater. Heat Treat., 2007, vol. 28, no. 2, pp. 89–93.

    Google Scholar 

  23. Chen, N.C., Ai, J., Chen, Y.C., He, P., Ren, J.X., and Ji, D.M., Multilayer strategy and mechanical grinding for smoothing CVD diamond coated defective substrate, Mater. Design, 2016, vol. 103, pp. 194–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Dejun.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejun, K., Wen, Z. & Ling, Z. Friction-Wear Behaviors of Chemical Vapor Deposited Diamond Films at High Temperatures. J. Superhard Mater. 41, 98–105 (2019). https://doi.org/10.3103/S1063457619020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619020047

Keywords

Navigation