Skip to main content
Log in

Plasma-Enhanced CVD Equipment for Deposition of Nanocomposite Nanolayered Films

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The paper describes the main design principles of plasma-enhanced chemical vapor deposition (PECVD) equipment based on a Mod. VUP-5(M) universal vacuum pumping station, and the application of such equipment for deposition of thin films, including nanolayered ones, from vapors of usually liquid precursors. The method can be classified as PECVD in a gas atmosphere activated by E-type radio-frequency (RF) plasma in continuous flow systems (the open-tube method). The equipment is universal in terms of the types of precursors to be used and has a sufficient set of process variable in order to provide deposition of a wide range of coatings with a controlled thickness from 1 to 2000 nm. The PECVD equipment favorably supplements the VUP-5(M) functionalities and extends performance without any significant alteration of its design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALD-UKRAINE 2017. HERALD Training School, Kyiv, Ukraine, 30 May–1 June 2017.

  2. Azarenkov, N.A., Beresnev, V.M., Pogrebnyak, A.D., et al., Nanomaterialy, nanopokrytiya, nanotekhnologii. Ucheb. pos. (Nanomaterials, Nanocoatings, Nanotechnologies. Educational Manual), Kharkov: V.N. Karazin KhNU, 2009.

    Google Scholar 

  3. Shpak, A.P., Maiboroda, V.P., Kunitskii, Yu.A., and Revo, S.L., Nanosloistye kompozitsionnye materialy i pokrytiya (Nanolayered Composite Materials and Coatings), Kiev: Akademperiodika, 2004.

    Google Scholar 

  4. Porada, O.K., The Influence of Deposition Conditions for Si-C-N and Ti-N-C PECVD Coatings on the Structure Formation and Properties of the Coatings, Cand. Sci. (Eng.) Dissertation, Kyiv, 2009.

    Google Scholar 

  5. Blinkov, I.V. and Volkhonskii, A.O., Multisloinye nanostrukturnye pokrytiya dlya rezhushchego instrumenta (Multilayered Nonostructured Coatings for Cutting Tools), Moscow: Lambert Academic Publishing, 2012.

    Google Scholar 

  6. Hamakawa, Y., Amorphous Semiconductor Technologies and Devices, Tokyo: Ohmsha, Ltd., 1983.

    Google Scholar 

  7. Joannopoulos, J.D. and Lukovsky, G. (Eds.), The Physics of Hydrogenated Amorphous Silicon. Volume I. Structure, Preparation, and Devices. Volume II. Electronic and Vibrational Properties, Springer-Verlag Berlin Heidelberg, 1984.

    Google Scholar 

  8. Madan, A. and Shaw, M.P., The Physics and Applications of Amorphous Semiconductors, Academic Press, 1988.

    Google Scholar 

  9. Uvarova, I.V., Maksimenko, V.B., and Yarmola, T.M., Nanomaterialy ta yikh vykorystannya u medychnykh vyrobakh. Navchal’n. pos. MMIF NTUU “KPI” (Nanomaterials and Their Applications in Medical Products. Educational Manual. Biomedical Engineering Department. National Technical University of Ukraine “KPI”), Kyiv: KIM, 2013.

    Google Scholar 

  10. Uvarova, I.V. and Maksimenko, V.B., Biosumisni materialy dlya medychnykh vyrobiv. Navchal’n. pos. MMIF NTUU “KPI” (Biocompatible Materials for Medical Products. Educational Manual. Biomedical Engineering Department. National Technical University of Ukraine “KPI”), Kyiv: KIM, 2013.

    Google Scholar 

  11. Park, J.H. and Sudarshan, T.S., Surface engineering series, in Chemical vapour deposition, Ohio, USA: ASM International, Materials Park, 2001, Volume 2.

    Google Scholar 

  12. Jones, A.C. and Hitchman, M.L. (Eds.), Chemical Vapour Deposition: Precursors, Processes and Applications, Cambridge, UK: Royal Society of Chemistry, 2009.

    Google Scholar 

  13. Mazurenko, Ye.A., Mazurenko, Ye.A., Gerasymchuk, A.I., and Ovsyannykov, V.P., Chemical vapor dposition, synthesis of functional materials (Review), Fiz. Khim. Tverd. Tila, 2001, vol. 2, no. 3, pp. 339–349.

    CAS  Google Scholar 

  14. Timoshenko, N.I. and Rebrov, A.K., How to produce nanostructured films and coatings from a gaseous phase. Review. URL: http://www.itp.nsc.ru/articles/populjarno_o_nanotehnologijah.html

  15. Danilin, B.S. and Syrchin, V.K., Magnetronnye raspylitel’nye sistemy (Magnetron Sputtering Systems), Moscow: Radio i Svyaz’, 1982.

    Google Scholar 

  16. Kelly, P.J. and Arnell, R.D., Magnetron sputtering: a review of recent developments and applications, Vacuum, 2000, vol. 56, pp. 159–172.

    Article  CAS  Google Scholar 

  17. Jedrzejowski, P., Cizek, J., Amassian, A., Klemberg-Sapieha, J.E., Vlcek, J., and Martinu, L., Mechanical and optical properties of hard SiCN coatings prepared by PECVD, Thin Solid Films, 2004, vol. 447–448, pp. 201–207.

    Article  CAS  Google Scholar 

  18. Ferreira, I., Fortunato, E., Vilarinho, P., Viana, A. S., Ramos, A.R., Alves, E., Martins, R., Hydrogenated silicon carbon nitride films obtained by HWCVD, PA-HWCVD and PECVD techniques, J. Non-Cryst. Solids, 2006, vol. 352, pp. 1361–1366.

    Article  CAS  Google Scholar 

  19. Huran, J., Valovic, A., Kucer, M., Kleinová, A., Kovaccová, E., Bohácek, P., and Sekácová, M., Hydrogenated silicon carbon nitride films prepared by PECVD technology: properties, J. Electrical Eng, 2012, vol. 63, pp. 333–335.

    Article  Google Scholar 

  20. Post vakuumnyi universal’nyi VUP-5 (dokumentatsiya po ekspluatatsii) (Universal Vacuum Pumping Station VUP-5 (Operating Manual)), 1990.

  21. Plazmokhmicheskoe osazhdenie (PECVD). Peredovye plazmennye tekhnologii (Plasma-Enhanced Chemical Vapor Deposition (PECVD). Advanced Plasma Technologies. URL: http://www.plasmasystem.ru/technology/pecvd

  22. Ivashchenko, L.A., Ivashchenko, V.I., Porada, O.K., Butenko, O.O., Dub, S.M., Lytvyn, P.M., Morozhenko, V.O., and Kozak, A.O., Characterization of PECVD coatings deposited using hexamethyl-disilazane, Nanostr. Materialoved., 2011, vol. 4, pp. 42–48.

    Google Scholar 

  23. Ivashchenko, V.I., Kozak, A.O., Ivashchenko, L.A., Sinelnichenko, O.K., Lytvyn, O.S., Tomila, T.V., and Malakhov, V.J., Characterization of SiCN thin films: experimental and theoretical investigations, Thin Solid Films, 2014, vol. 569, pp. 57–63.

    Article  CAS  Google Scholar 

  24. Porada, O.K., The influence of bias potential on the properties of Si-C-N films deposited on silicon by PECVD technique from hexamethyl-disilazane, Nanostr. Materialoved., 2014, no. 3–4, pp. 3–14.

  25. Porada, O.K., The influence of deposition and annealing conditions on nanohardness of amorphous Si-C-N films, Nanosis., Manomat., Nanotekhn., 2015, vol. 13, no. 1, pp. 59–74

    CAS  Google Scholar 

  26. Porada, O.K., Manzhara, V.S., Kozak, A.O., Ivashchenko, V.I., and Ivashchenko, L.A., Pholuminescent properties of PECVD films based on Si, C, N, Zhurn. Nano- ta Elektr. Fiz., 2017, vol. 9, no. 2, pp. 02022 (6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Porada.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porada, O.K., Ivashchenko, V.I., Ivashchenko, L.A. et al. Plasma-Enhanced CVD Equipment for Deposition of Nanocomposite Nanolayered Films. J. Superhard Mater. 41, 32–37 (2019). https://doi.org/10.3103/S1063457619010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619010040

Keywords

Navigation