Skip to main content
Log in

High-Entropy Coatings—Structure and Properties

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Metal and nitride coatings of high-entropy alloys (HEA) having different phase compositions produced by different methods were investigated. It is shown that for the high-entropy coatings is characteristic the presence of the nanostructured state, which in parallel with the cluster structure provides hardness for metal coatings ~ 10–19 GPa; for nitride coatings are characteristic 50–60 GPa and the modulus of inelastic buckling more than 300 MPa. The relation of the lattice parameters, which are defined experimentally, to the parameter of the lattice of the most refractory metal in the HEA reflects the level of the elastic modulus relative to the theoretically possible both in the cast HEA and in metal coatings on their base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murty, B.S., Yeh, Jien-Wei, and Ranganathan, S., High Entropy Alloys, Butterworth-Heinemann Ltd (Verlag), 2014.

    Google Scholar 

  2. Cantor, B., Multicomponent and high entropy alloys, Entropy, 2014, vol. 16, pp. 4749–4768.

    Article  Google Scholar 

  3. Ranganathan, S., Alloyed pleasures: multimetallic cocktails, Current Sci., 2003, vol. 85, no. 10, pp. 1404–1406.

    Google Scholar 

  4. Yeh, J.W., Lin, S.J., Chin, T.S., Gan, J.Y., Chen, S.K., Shun, T.T., Tsau, Ch.-H., and Chou, Sh.-Y., Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 2004, vol. 35, no. 8, pp. 2533–2536.

    Article  Google Scholar 

  5. Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compounds, 2011, vol. 509, no. 20, pp. 6043–6048.

    Article  CAS  Google Scholar 

  6. Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovsky, E.P., Strengthening and mechanivcal properties of cast high-entropy alloys, Composites and Nanomaterials, 2011, no. 2, pp. 5–20.

    Google Scholar 

  7. Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovsky, E.P., Distribution of elements in cast multicomponent high-entropy one-phase alloys with the bcc crystal lattice, Ibid., 2012, no. 3, pp. 48–65.

    Google Scholar 

  8. Yang, X. and Zhang, Y., Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater.Chem. Phys., 2012, vol. 132, pp. 233–238.

    Article  CAS  Google Scholar 

  9. Firstov, S.A., Rogul’, T.G., Krapivka, N.A., Ponomarev, S.S., Tkach, V.N., Kovylyaev, V.V., Gorban’, V.F., and Karpets, M.V., Solid-solution strengthening of the high-entropy alloy AlTiVCrNbMo, Deformation and destruction of materials, 2013, no. 2, pp. 9–16.

    Google Scholar 

  10. Senkov, O.N., Wilks, G.B., Miracl, D.B., Chuang, C.P., and Liaw, P.K., Refractory high-entropy alloys, Intermetallics, 2010, vol. 18, no. 9, pp. 1758–176.

    Article  CAS  Google Scholar 

  11. Jiang, Li, Lu, Yi., Dong, Yo., Wang, T., Cao, Zh., and Li, T., Annealing effects on the microstructure and properties of high-entropy CoCrFeNiTi0.5 alloy casting ingot, Ibid., 2014, vol. 44, pp. 37–43.

    Google Scholar 

  12. Shun, T.-T., Hung, Ch.-H., and Lee, Ch.-F., The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700°C, J. Alloys Comp., 2010, no. 495, pp. 55–58.

    Article  CAS  Google Scholar 

  13. Ren, B., Liu, Z.X., Cai, B., Wang, M.X., and Shi, L., Aging behavior of a CuCr2Fe2NiMn high-entropy alloy, Mater. Design., 2012, no. 33, pp. 121–126.

    Article  CAS  Google Scholar 

  14. Chen, T.K., Wong, M.S., Shun, T.T., and Yeh, J.W., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 2005, vol. 200, no. 5–6, pp. 1361–1365.

    Article  CAS  Google Scholar 

  15. Firstov, S.A., Andreev, A.A., Gorban’, V. F., Danilenko, N.I., Krapivka, N.A., and Stolbovoy, V.A., A new class of superhard nitride coatings based on multicomponent high-entropy alloys, Collect. Papers of Internat. Conf. Nanotechnologies of functional materials”, St. Petersburg, June 27–29, 2012, pp. 572–577.

    Google Scholar 

  16. Chang, Sh.-Yi, Lin, Sh.-Y., Huang, Yi-Ch., and Wu, Ch.-L., Mechanical properties, deformation behaviors andinterface adhesion of (AlCeTaTiCr)Nx multi-component coatings, Surf. Coat. Technol., 2010, vol. 204, no. 20. pp. 3307–3314.

    Article  CAS  Google Scholar 

  17. Tsai, D.-Ch., Shieu, F.-Sh., Chang, Sh.-Y., Yao, H.-Ch., and Deng, M.-J., Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers, J. Electrochem. Soc., 2010, vol. 157, no. 3, pp. K52–K58

    Article  CAS  Google Scholar 

  18. Lai, Ch.-H., Lin, S.-J., Yen, L.-W., and Chang Sh.-Y., Preparetion and characterization of AlCrTaTiZr multi-element nitride coatings, Surf. Coat. Technol., 2006, vol. 201, no. 6, pp. 3275–3280.

    Article  CAS  Google Scholar 

  19. Feng, X., Tang, G., Sun, M., Ma, X., Wang, L., and Yukimura, K., Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films, Ibid., 2013, vol. 228, pp. S424–S427.

    CAS  Google Scholar 

  20. Huang, P.-K. and Yeh, Ji.-W., Inhibition of grain coarsening up to 1000 C in (AlCrNbSiTiV)N superhard coatings, Scripta Materialia, 2010, vol. 62, pp. 105–108.

    Article  CAS  Google Scholar 

  21. Huang, P.-K. and Yeh, Ji.-W., Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coating, J. Phys. D: Appl. Phys., 2009,vol. 42, pp. 115–120.

    Google Scholar 

  22. Liang, Sh.-Ch., Chang, Z.-Ch., Tsai, D.-Ch., Lin, Yi-Ch., Sung, H.-Sh., Deng, M.-Je., and Shieu, F.-Sh., Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings, Appl. Surf. Sci., 2011, vol. 257, pp. 7709–7713.

    Article  CAS  Google Scholar 

  23. Shaginyan, L.P., Gorban’, V.F., Krapivka, N.A., Firstov, S.A., and Kopylov, I.F., Properties of coatings from high-entropy alloy Al–Cr–Fe–Co–Ni–Cu–V, produced by the method of magnetron sputtering, Superhard Mater, 2016, no. 1, pp. 25–33.

    Article  Google Scholar 

  24. Andreev, A.A., Sablev, L.P., Shulaev, V. M., and Grigoriev, C.N., Vacuum–arc apparatuses and coatings, Khar’kiv, National Scientific centre KhFTI, 2005.

    Google Scholar 

  25. Andreev, A.A., Sablev, L.P., and Grigoriev, C.N., Vacuum–arc coatings, Khar’kiv, National Scientific centre KhFTI, 2010.

    Google Scholar 

  26. Ignatovich, S.P. and Zakiev, I.M., Universalmicro/nano “Micron-gamma”, Zavodskaya laboratoriya, 2011, vol. 77, no. 1, pp. 61–67.

    Google Scholar 

  27. Firstov, S.A., Gorban’, V. F., Pechkovsky E.P., and Mameka, N. A., Connection of the strength property of materials with the indices of the automatic indentation, Materialovedenie, 2007, no. 11

  28. Firstov, S.A., Gorban’, V. F., Pechkovsky E.P., and Mameka, N. A., Equation of the indentation, Dop. NAS of Ukraine, 2007, no. 12, pp. 100–106.

    Google Scholar 

  29. Zhang, Y. and Zhou, Y.J., Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum, 2007, vol. 561–565, pp. 1337–1339.

    Article  Google Scholar 

  30. Firstov, S.A., Gorban’, V.F., Krapivka, N.A., Karpets, M.V., and Pechkovsky, E.P., Influence of the electronic concentration on the phase composition of high-entropy equiatomic alloys, Powder Metallurgy, 2015, no. 9/10, pp. 126–133.

    Google Scholar 

  31. Firstov, S.A., Mileiko, S.T., Gorban’, V. F., Krapivka, N. A., and Pechkovsky, E. P., Elastic modulus of multicomponent cast single-phase high entropy alloys with the bcc lattice, Composites and nanomaterials, 2014, no. 1(6), pp. 8–17.

    Google Scholar 

  32. Gorban’, V.F., Nazarenko, V.A, Danilenko, M.I., Karpets, M.V., Krapivka, M.O., Firstov, S.O, and Maka-renko, O.S., Influence of the deformation on the phase composition and physico-mechanical properties of high entropy alloys, Deformation and destruction of materials, 2013, no. 9, pp. 2–6.

    Google Scholar 

  33. Karpets’, M.V., Musluvchenko, O.M., Krapivka, M.O., Gorban’, V. F., Makarenko, O.S., and Nazarenko, V.A., Effect of plastic deformation on the phase composition, texture, and mechanical properties of high-entropy alloy CrMnFeCoNi2Cu, Superhard Mater., 2015, no. 1, pp. 21–27.

    Article  Google Scholar 

  34. Vegard, L., The constitution of the mixed crystals and the filling of space of the atoms, Zeitschrift für Physik, 1921, vol. 5, no. 1, pp. 17–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Gorban’.

Additional information

Original Russian Text © V.F. Gorban’, A.A. Andreev, L.R. Shaginyan, S.A. Firstov, M.V. Karpets, N.I. Danilenko, 2018, published in Sverkhtverdye Materialy, 2018, Vol. 40, No. 2, pp. 19–36.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorban’, V.F., Andreev, A.A., Shaginyan, L.R. et al. High-Entropy Coatings—Structure and Properties. J. Superhard Mater. 40, 88–101 (2018). https://doi.org/10.3103/S106345761802003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345761802003X

Keywords

Navigation