Skip to main content
Log in

Surface Roughness of Optoelectronic Components in Mechanical Polishing

  • Investigation of Machining Processes
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The investigation of the mechanism of mechanical polishing of optoelectronic components made of crystalline materials has demonstrated that the machined surface roughness parameters grow linearly with increasing most probable values of debris particle size and surface area, unit cell volume, and surface area of the crystal plane machined. The surface roughness parameters are shown to be inversely proportional to the energy spent for the debris particle formation. The relative surface roughness of the polished silicon carbide, gallium nitride, aluminum nitride, and sapphire workpieces is represented by the following ratio: 0.68: 0.67: 0.63: 1.00.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budnikov, A.T., Vovk, E.A., Krivonogov, S.I., Danko, A.Ya., and Lukiyenko, O.A., Anisotropy of sapphire properties associated with chemical-mechanical polishing with silica, Funct. Mater., 2010, vol. 17, no. 4, pp. 488–494.

    CAS  Google Scholar 

  2. Vovk, E.A., Budnikov, A.T., Nizhankovskyi, S.V., Kryvonogov, S.I., Krukhmalev, A.A., and Dobrotvorskaya, M.V., Polishing of AlN/sapphire substrate obtained by thermochemical nitridation of sapphire, Funct. Mater., 2013, vol. 20, no. 2, pp. 253–258.

    Article  CAS  Google Scholar 

  3. Chen, X.F., Siche, D., Albrecht, M., Hartmann, C., Wollweber, J., and Xu, X.G., Surface preparation of AlN substrates, Cryst. Res. Technol., 2008, vol. 43, issue 6, pp. 651–655.

    Article  CAS  Google Scholar 

  4. Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, A.Yu., and Kovalev, S.V., A mechanism of diamond-abrasive finishing of monocrystalline silicon carbide, J. Superhard Mater., 2013, no. 5, pp. 303–308.

    Article  Google Scholar 

  5. Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Kurilovich, V.D., Danil’chenko, M.A., Prikhna, T.A., Borimskii, A.I., Poltoratskii, A.M., and Kutsai, V.G., Polishing of optoelectronic components made of monocrystalline silicon carbide, J. Superhard Mater., 2015, vol. 37, no. 1, pp. 48–56.

    Article  Google Scholar 

  6. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Polishing substrates of single crystal silicon carbide and sapphire for optoelectronics, Funct. Mater., 2016, vol. 23, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  7. Aida, H., Takeda, H., Kim, S.-W., Aota, N., Koyama, K., Yamazaki, T., and Doi, T., Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives, Appl. Surf. Sci., 2014, vol. 292, pp. 531–536.

    Article  CAS  Google Scholar 

  8. Filatov, Yu.D., Sidorko, V.I., and Kovalev, S.V., Diamond polishing of crystalline materials for optoelectronics, J. Superhard Mater., 2017, vol. 39, no. 6, pp. 427–433.

    Article  Google Scholar 

  9. Yaguo Li, Yongbo Wu, Libo Zhou, and Masakazu Fujimoto, Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher, Int. J. Machine Tools Manufact., 2014, vol. 77, pp. 93–102.

    Article  Google Scholar 

  10. Filatov, Y.D., Filatov, O.Yu., Monteil, G., Heisel, U., Storchak, M., Bound-abrasive grinding and polishing of surfaces of optical materials, Proc. SPIE, 2010, vol. 7786, pp. 778613.

    Article  Google Scholar 

  11. Ling, Y., Low-damage grinding, in Polishing of Silicon Carbide Surfaces, SIMTech Technical Report (PT/01/001/PM).

  12. Budnikov, A.T., Vovk, E.A., Kanishchev, V.N., and Krivonogov, S.I., Investigation of residual stresses in sapphire plates after grinding and polishing, Funct. Mater., 2012, vol. 19, no. 4, pp. 478–482.

    CAS  Google Scholar 

  13. Nowak, G., Xia, X.H., Kelly, J.J., Weyher, J.L., and Porowski, S., Electrochemical etching of highly conductive GaN single crystals, J. Cryst. Growth, 2001, vol. 222, pp. 735–740.

    Article  CAS  Google Scholar 

  14. Golabczak, M., Polishing of hard machining semiconductor materials made of silicon carbide, Mech. Mech. Eng., 2011, vol. 15, no. 1, pp. 81–93.

    Google Scholar 

  15. Hui Deng, Kenji Hosoya, Yusuke Imanishi, Katsuyoshi Endo, and Kazuya Yamamura, Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry, Electrochem. Commun., 2015, vol. 52, pp. 5–8.

    Article  Google Scholar 

  16. Yan, W., Zhang, Z., Guo, X., Liu, W., Song, Z., The fffect of pH on sapphire chemical mechanical polishing, ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 3, pp. 108–111.

    Article  Google Scholar 

  17. Zhu, H., Tessaroto, L.A., Sabia, R., Greenhut, V.A., Smith, M., and Niesz, D.E., Chemical mechanical polishing (CMP) anisotropy in sapphire, Appl. Surf. Sci., 2004, vol. 236, no. 1–4, pp. 120–130.

    Article  CAS  Google Scholar 

  18. Vovk, E.A., Chemical-mechanical polishing of sapphire by polishing suspension based on aerosol, Funct. Mater., 2015, vol. 22, no. 2, pp. 252–257.

    Article  CAS  Google Scholar 

  19. Vovk, E.A., Deagglomeration of aerosil in polishing suspension for chemical-mechanical polishing of sapphire, Funct. Mater., 2015, vol. 22, no. 1, pp. 110–115.

    Article  CAS  Google Scholar 

  20. Filatov, Yu.D. and Rogov, V.V., A cluster model of fatigue wear mechanism of SiO2-containing materials in polishing with tools containing bound ceria-based polishing powders. Part 1, Sverkhtverdye Materaily, 1994, no. 3, pp. 40–43 [J. Superhard Mater., 1994, no. 3].

    Google Scholar 

  21. Filatov, Yu.D., Polishing of aluminosilicate materials with bound-abrasive tools, Sverkhtverdye Materialy, 2001, no. 3, pp. 36–49 [J. Superhard Mater., 2001, no. 3].

    Google Scholar 

  22. Filatov, Yu.D. and Sidorko, V.I., Statistical approach to wear of nonmetallic workpiece surfaces in polishing, Sverkhtverdye Materialy, 2005, no. 1, pp. 58–66 [J. Superhard Mater., 2005, no. 1].

    Google Scholar 

  23. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 123–131.

    Article  Google Scholar 

  24. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Polished surface roughness of optoelectronic components made of monocrystalline materials, J. Superhard Mater., 2016, vol. 38, no. 3, pp. 197–206.

    Article  Google Scholar 

  25. Filatov, Yu.D., The mechanism of the surface microrelief formation in glass polishing, Sverkhtverdye Materialy, 1991, no. 5, pp. 61–65 [J. Superhard Mater., 1991, no. 5].

    Google Scholar 

  26. Filatov, Yu.D., Yashchuk, V.P., Filatov, O.Yu., Heisel, U., Storchak, M., and Monteil, G., Assessment of surface roughness and reflectance of nonmetallic products upon diamond abrasive finishing, J. Superhard Mater., 2009, no. 5, article338.

  27. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Heisel, U., and Storchak, M., Surface roughness in diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 3, pp. 191–195.

    Article  Google Scholar 

  28. Lee, H.S., Jeong, H.D., and Dornfeld, D.A., Semi-empirical material removal rate distribution model for SiO2chemical mechanical polishing (CMP) processes, Precis. Eng., 2013, vol. 37, pp. 483–490.

    Article  Google Scholar 

  29. Harima, H., Properties of GaN and related compounds studied by means of Raman scattering, J. Phys.: Condens. Matter., 2002, vol. 14, pp. 967–993.

    Google Scholar 

  30. Davydov, V.Yu., Kitaev, Yu.E., Goncharuk, I.N., Smirnov, A.N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M.B., Mirgorodsky, A.P., and Evarestov, R.A., Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Phys. Rev., vol. 58, no. 19, pp. 12899–12907.

  31. Asghar, K., Qasim, M., and Das, D., Effect of polishing parameters on chemical mechanical planarization of C-plane (0001) gallium nitride surface using SiO2 and Al2O3 abrasives, ECS J. Solid State Sci. Technol., 2014, vol. 3, no. 8, pp. 277–284.

    Article  Google Scholar 

  32. Kadleikova, M., Breza, J., and Vesely, M., Raman spectra of synthetic sapphire, Microelectr. J., 2001, no. 32, pp. 955–958.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Filatov.

Additional information

Original Russian Text © Yu.D. Filatov, 2018, published in Sverkhtverdye Materialy, 2018, Vol. 40, No. 1, pp. 68–76.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, Y.D. Surface Roughness of Optoelectronic Components in Mechanical Polishing. J. Superhard Mater. 40, 52–57 (2018). https://doi.org/10.3103/S1063457618010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457618010082

Keywords

Navigation