Skip to main content
Log in

Thermal stability of ultrahard polycrystalline diamond composite materials

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Thermal stability of the ultrahard polycrystalline diamond (UHPCD) composite material developed by the reinforcement of the polycrystalline diamond (PCD) with chemical vapor deposition (CVD) diamond has been investigated in a flow of argon at 1200°C. The indentation, Raman spectra and wear test have been performed to compare hardness, C-C structure and wear resistance of untreated and thermal treated UHPCD. It has been shown that the hardness of CVD diamond in UHPCD attains 133 ± 7 GPa after high pressure and high temperature (HP-HT), while after thermal treatment the hardness decreases to 109 ± 3 GPa, and the wear resistance of the thermal treated UHPCD decreases from 0.17 to 0.6 mg/km. The narrowing of full width at half maximum (FWHM) and shift of Raman peak to lower frequencies of CVD diamond in thermal treated UHPCD imply a decrease of crystal structural defects and compressive stresses, which results in a drop of the hardness of CVD diamond in a thermal treated UHPCD. The higher wear rate of thermal treated UHPCD is due to the lower hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaishi, M., Yamaoka, S., Ueda, F., and Ohashi, T., Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties, Diamond Relat. Mater., 1996, vol. 5, no. 1, pp. 2–7.

    Article  CAS  Google Scholar 

  2. Ueda, F., Ohashi, T., Akaishi, M., and Yamaoka, S., Cutting performance of sintered diamond with MgCO3 as a sintering agent, Mater. Sci. and Eng. A, 1996, vol. 209, pp. 260–263.

    Article  Google Scholar 

  3. Akaishi, M. and Yamaoka, S., Physical and chemical properties of the heat resistant diamond compacts from diamond-magnesium carbonate system, Ibid., 1996, vol. 209, pp. 54–59.

    Article  Google Scholar 

  4. Westraadt, J.E., Dubrovinskaia, N., Neethling, J.H., and Sigalas, I., Thermally stable polycrystalline diamond sintered with calcium carbonate, Diamond Relat. Mater., 2007, vol. 16, no. 11, pp. 1929–1935.

    Article  CAS  Google Scholar 

  5. Shul’zhenko, A.A., Ashkinazi, E.E., Sokolov, A.N., Gargin, V.G., Ral’chenko, V.G., Konov, V.I., Aleksandrova, L.I., Bogdanov, R.K., Zakora, A.P., Vlasov, I.I., Artyukov, I.A., and Petronyuk, Y.S., Novel hybrid ultrahard materialal, J. Superhard Mater., 2010, vol. 32, no. 5, pp. 293–300.

    Article  Google Scholar 

  6. Shul’zhenko, A.A., Sokolov, A.N., Loshak, M.G., Aleksandrova, L.I., and Zaika, N.I., Physico-mechanical properties and structure of diamond polycrystalline composite materials produced from variously dispersed powders, Ibid., 2008, vol. 30, no. 1, pp. 23–27.

    Google Scholar 

  7. Obraztsov, A.N., Kopylov, P.G., Chuvilin, A.L., and Savenko, N.V., Production of single crystal diamond needles by a combination of CVD growth and thermal oxidation, Diamond Relat. Mater., 2009, vol. 18, pp. 1289–1293.

    Article  CAS  Google Scholar 

  8. Pu, J.C., Wang, S.F., and Sung, J.C., High-temperature oxidation behaviors of CVD diamond films, Appl. Surf. Sci., 2009, vol. 256, pp. 668–673.

    Article  CAS  Google Scholar 

  9. Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., and Kao, F.J., High-temperature Raman study in CVD diamond, Thin Solid Films, 1995, vol. 270, pp. 143–147.

    Article  CAS  Google Scholar 

  10. Ralchenko, V., Nistor, L., Pleuler, E., Khomidch, A., Vlasov, I., and Khmelnitskii, R., Structure and properties of high-temperature annealed CVD diamond, Diamond Relat. Mater., 2003, vol. 12, pp. 1964–1970.

    Article  CAS  Google Scholar 

  11. Fortunato, W., Chiquito, A.J., Galzerani, J.C., and Moro, J.R., Crystalline quality and phase purity of CVD diamond films studied by Raman spectroscopy, J. Mater. Sci., 2007, vol. 42, no. 17, pp. 7331–7336.

    Article  CAS  Google Scholar 

  12. Miyamoto, M., Takse, T., and Mitsuda, Y., Raman spectra of various diamonds, Mineralogical Journal, 1993, vol. 16, no. 5, pp. 246–257.

    Article  CAS  Google Scholar 

  13. Sokolov, A.N., Shul’zhenko, A.A., Gargin, V.G., Kotko, A.V., Briksa, V.P., Bogdanov, P.K., Zakora, A.P., Loshak, M.G., and Aleksandrova, L.I., Structure and physico-mechanical properties of CVD diamonds of various crystalline perfections in the Hybridite material, J. Superhard Mater., 2013, vol. 35, no. 2, pp. 83–92.

    Article  Google Scholar 

  14. Huang, E.P., Huang, E., Yu, S.C., Chen, Y.H., Lee, J.S., and Fang, J.N., High-temperature and pressure Raman spectroscopy of diamond, Materials Letters, 2010, vol. 64, pp. 589–582.

    Article  Google Scholar 

  15. Domsa, S., Predicting the wear resistance of diamond tools matrices via composition/hardness, Diamond tooling proceedings, 2002, pp. 57–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yue.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, D., Yue, W., Lin, F. et al. Thermal stability of ultrahard polycrystalline diamond composite materials. J. Superhard Mater. 37, 67–72 (2015). https://doi.org/10.3103/S106345761502001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345761502001X

Keywords

Navigation