Skip to main content
Log in

Photoelectrochemical advanced oxidation processes on nanostructured TiO2 catalysts: Decolorization of a textile azo-dye

  • Physical Chemistry of Water Treatment Processes
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

This work describes a novel approach for water treatment by photoelectrocatalysis, based on nanostructured TiO2. The decolorization of aqueous solutions containing the azo dye RR243 is carried out in a tubular photocatalytic reactor working in semi batch mode under electrical polarization of the catalyst. Two different nanostructured catalysts were tested: nanotubular TiO2 obtained by conventional anodization (CA), and a novel photoactive nanoporous TiO2 obtained by plasma electrolytic oxidation (PEO). Neither UV irradiation of the TiO2 catalysts nor the electrical bias individually considered lead to a significant reduction of the dye concentration. By irradiating the catalysts with UVC light while applying an electrical bias to the same, the concentration of the dye decreased from 25 L to 2.5 mg/L using the nanotubular CA TiO2 catalyst, and to less than 1.8 mg/L using the novel nanoporous PEO TiO2 in 50 min. The main advantages of this method over current approaches for the degradation of pollutants are both the considerable processing time reduction and a suitable and easy to scale up reactor design. A further advantage is the relatively easyness in the production of the TiO2 catalysts by PEO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parsons. S., Advanced Oxidation Processes for Water and Wastewater Treatment, London: IWA Publishing, 2004.

    Google Scholar 

  2. Hashimoto, K., Irie, H., and Fujishima, A., Jap. J. Appl. Phys., 2005, vol. 44, pp. 8269–8285.

    Article  CAS  Google Scholar 

  3. Hoffmann, M.R., Martin, S.T., Cho, W., and Bahnemann, D.W., Chem. Rev., 1995, vol. 95, pp. 69–96.

    Article  CAS  Google Scholar 

  4. Sanchez, M.J., Riviero, M., and Ortiz, I., Desalination, 2010, vol. 262, pp. 141–146.

    Article  CAS  Google Scholar 

  5. Choi, H., Alabed, S.R., Dionysiou D.D., Stathatos, E. and Lianos, P., Sustainable Water for the Future Recycling Versus Desalination, Escobar, I.C. and Schafer, A.I. (Eds.), Amsteram: Elsevier, 2010, pp. 229–254.

  6. Betesttetti, M., Sacco, D., Brunella, F., Franz, S., Amadelli, R., and Samiolo, L., Mater. Chem Phys., 2010, vol. 124, pp. 1225–1231.

    Article  Google Scholar 

  7. Bestetti, M., Franz S., Brunella, F., Franz S., Aadelli, R., and Samiolo, L., Thin Solid Films, 2007, vol. 515, pp. 5253–5258.

    Article  CAS  Google Scholar 

  8. Betetti, M., Franz, S., and Brunella, F., Poliecnico Di Milano, Metal or metalized fabrics coated with nanostructural titanium dioxid, WO WO 2008001405 A2, March 20, 2008.

    Google Scholar 

  9. Turolla, A., Fumagalli, M., Bestetti, M., and Antonelli, M., Desalination, 2012, vol 285, pp. 377–382.

    Article  CAS  Google Scholar 

  10. Yeerokhin, A.L., Nie, X., Layland, M., Mathews, A., and Dowe, S.L., Surf. Coat.Technol., 1999, vol. 122, nos. 2/3, pp. 73–93.

    Article  Google Scholar 

  11. Xiaohong, W., Qin, W., and Jiang, Z., Thin Solid Films, 2006, vol. 496, pp. 288–292.

    Article  Google Scholar 

  12. Poznyak, S.K., Talapin, D.V. and Kulak, A.I., Electroanal. Chem., 2005, vol. 579, pp. 795–310.

    Article  Google Scholar 

  13. Khan, R.H.U., Yerokhin, A.L., and Mathews, A., Philos. Mag., 2008, vol. 88, pp. 795–807.

    Article  CAS  Google Scholar 

  14. Spurr, R.S., and Myers, H., Anal. Chem., 1957, vol. 29, pp. 760–762.

    Article  CAS  Google Scholar 

  15. Fujishima, A., Zhang, X., and Tryk, D.A., Surf. Sci. Rep., 2008, vol. 63, pp. 515–582.

    Article  CAS  Google Scholar 

  16. Dutta, S., Parsons, S., Bharrachajee, C., Jarvis, P., and Bandyoadhaya, S., Chem. Eng. J., 2009, vol. 155, pp. 674–679.

    Article  CAS  Google Scholar 

  17. Rizzo, L., Meric S., Guida, M., Kassios, D., Belgiorno, V., Water Res., 2009, vol. 43, pp. 4070–4079.

    Article  CAS  Google Scholar 

  18. Awitor, K.O., Rafqah, S., Geranton, G., Sibaud, Y., Larson, P.R., Bokalawela, R.S., Jernigen, J.D., and Johnson, M.B., J. Photochem. Photobiol., A, 2008, vol. 199, pp. 250–254.

    Article  CAS  Google Scholar 

  19. Shin, Y.K., Chae, W.S., Song, Y.W. and Sung, Y.M., Electochem. Commun, 2012, vol. 8, pp. 465–470.

    Article  Google Scholar 

  20. Mirelman, L.K., Curran, J.A. and Clyne, T.W., Surface and Coaings Technnol., 2012, vol. 207, pp. 66–71.

    Article  CAS  Google Scholar 

  21. Carp, O., Huisman, C.L., Reller, A., Prog. Solid State Chem., 2004, vol. 32, pp. 33–177.

    Article  CAS  Google Scholar 

  22. Malato, S., Ibanez, P.F., Maldonado, M.I., Blanco, J., Gernjak, W., Catal. Tody, 2009, vol. 147, pp. 1–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Franz.

Additional information

The text was submitted by the authors in English

Original Russian Text © S. Franz, D. Perego, O. Marchese, M. Bestetti, 2015, published in Khimiya i Tekhnologiya Vody, 2015, Vol. 37, No. 3, pp. 207–219.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, S., Perego, D., Marchese, O. et al. Photoelectrochemical advanced oxidation processes on nanostructured TiO2 catalysts: Decolorization of a textile azo-dye. J. Water Chem. Technol. 37, 108–115 (2015). https://doi.org/10.3103/S1063455X15030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X15030029

Keywords

Navigation