Skip to main content
Log in

Magnetic and Resistive Characteristics of a SrMnO3/La0.7Sr0.3MnO3 Heterostructure in a Wide Range of Temperatures

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Magnetic and resistive properties of a SrMnO3/La0.7Sr0.3MnO3 antiferromagnetic/ferromagnetic heterostructure are studied in a temperature range of 50–300 K using magnetotransport measurements. It is established that, in the heterostructure, the SrMnO3 layer is in an antiferromagnetic state at room temperature, which is above its Néel point for a single layer, and the magnetization of the heterostructure exhibits the properties of unidirectional anisotropy. This conclusion is also confirmed by the ferromagnetic resonance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zhang, C., Ding, S., Qiao, K., et al., ACS Appl. Mater. Interfaces, 2021, vol. 13, p. 28442.

    Article  Google Scholar 

  2. Nogues, J. and Schuller, K.I., J. Magn. Magn. Mater., 1999, vol. 192, p. 203.

    Article  ADS  Google Scholar 

  3. Ramirez, A.P., J. Phys.: Condens. Matter, 1997, vol. 9, no. 39, p. 8171.

    ADS  Google Scholar 

  4. Coey, J.M.D., Viret, M., and von Molnar, S., Adv. Phys., 1999, vol. 48, p. 167.

    Article  ADS  Google Scholar 

  5. du Trémolet de Lacheisserie, É., Gignoux, D., and Schlenker, M., Magnetism II: Materials and Applications, Norwell: Kluwer, 2002.

    Book  Google Scholar 

  6. Bason, Y., Klein, L., Yau, J.-B., et al., Appl. Phys. Lett., 2004, vol. 84, no. 14, p. 2593.

    Article  ADS  Google Scholar 

  7. Bason, Y., Klein, L., Yau, J.-B., Hong, X., et al., J. Appl. Phys., 2006, vol. 99, no. 8, p. 08R701.

  8. Dahlberg, E.D., Riggs, K., and Printz, G.A., J. Appl. Phys., 1988, vol. 63, no. 8, p. 4270.

    Article  ADS  Google Scholar 

  9. Rijks, Th.G.S.M., Coehoorn, R., and de Jong, M.J.M., Phys. Rev. B, 1995, vol. 51, p. 283.

    Article  ADS  Google Scholar 

  10. Kuhlow, B., Lambeck, M., Schroeder-Furst, H., et al., Z. Angew. Phys., 1971, vol. 32, p. 54.

    Google Scholar 

  11. Miller, B.H. and Dahlberg, E.D., Appl. Phys. Lett., 1996, vol. 69, p. 3932.

    Article  ADS  Google Scholar 

  12. Chen, Y., Lottis, D.K., and Dahlberg, E.D., J. Appl. Phys., 1991, vol. 70, no. 10, p. 5822.

    Article  ADS  Google Scholar 

  13. Chen, Y., Lottis, D.K., and Dahlberg, E.D., Mod. Phys. Lett. A, 1991, vol. 5, p. 1781.

    Article  Google Scholar 

  14. Roux-Buisson, H. and Bruyere, J.C., Czech J. Phys. B, 1971, vol. 21, p. 516.

    Article  ADS  Google Scholar 

  15. Jin, S., Tiefel, T.H., McCormack, M., et al., Science, 1994, vol. 264, p. 413.

    Article  ADS  Google Scholar 

  16. Hwang, H.Y., Cheong, S.-W., Ong, N.P., and Batlogg, B., Phys. Rev. Lett., 1996, vol. 77, p. 2041.

    Article  ADS  Google Scholar 

  17. Ziese, M., Rep. Prog. Phys., 2002, vol. 65, p. 143.

    Article  ADS  Google Scholar 

  18. Coey, J.M.D., Viret, M., and von Molnár, S., Adv. Phys., 1999, vol. 48, p. 167.

    Article  ADS  Google Scholar 

  19. Nikitov, S.A., Safin, A.R., Kalyabin, D.V., et al., Phys.—Usp., 2020, vol. 63, no. 10, p. 945.

    Article  ADS  Google Scholar 

  20. Park, J.-H., Vescovo, E., Kim, H.-J., et al., Phys. Rev. Lett., 1998, vol. 81, no. 9, p. 1953.

    Article  ADS  Google Scholar 

  21. Izyumov, Yu.A. and Skryabin, Yu.N., Phys.—Usp., 2001, vol. 44, no. 2, p. 109.

    Article  ADS  Google Scholar 

  22. Yan, Wu., Suzukia, Y., Rüdiger, U., et al., Appl. Phys. Lett., 1999, vol. 75, no. 15, p. 2295.

    Article  ADS  Google Scholar 

  23. Chaluvadi, S.K., Ajejas, F., Orgiani, P., et al., J. Phys. D, 2020, vol. 53, p. 375005.

    Article  Google Scholar 

  24. Dho, J., Hur, N.H., Kim, I.S., and Park, Y.K., J. Appl. Phys., 2003, vol. 94, no. 12, p. 7670.

    Article  ADS  Google Scholar 

  25. Søndena, R., Ravindran, P., Stølen, S., et al., Phys. Rev. B, 2006, vol. 74, no. 5, p. 144102.

    Article  ADS  Google Scholar 

  26. Nalecz, D.M., Bujakiewicz-Koronska, R., and Radwanski, R.J., Ferroelectrics, 2015, vol. 483, p. 86.

    Article  ADS  Google Scholar 

  27. Maurel, L., Marcano, N., Prokscha, T., et al., Phys. Rev. B, 2015, vol. 92, no. 2, p. 024419.

    Article  ADS  Google Scholar 

  28. Shaikhulov, T.A., Ovsyannikov, G.A., Demidov, V.V., and Andreev, N.V., J. Exp. Theor. Phys., 2019, vol. 129, no. 1, p. 112.

    Article  ADS  Google Scholar 

  29. Shaikhulov, T.A., Safin, A.R., Stankevich, K.L., et al., JETP Lett., 2023, vol. 117, no. 8, p. 618.

    Article  ADS  Google Scholar 

  30. Li, F., Song, C., Wang, Y.Y., et al., Sci. Rep., 2015, vol. 5, p. 16187.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Demidov for providing our data on ferromagnetic resonance.

Funding

This work was performed as part of a State Task for the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Sizov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizov, V.E., Shaikhulov, T.A. Magnetic and Resistive Characteristics of a SrMnO3/La0.7Sr0.3MnO3 Heterostructure in a Wide Range of Temperatures. Bull. Russ. Acad. Sci. Phys. 87, 1540–1543 (2023). https://doi.org/10.3103/S1062873823703653

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823703653

Navigation