Skip to main content
Log in

Fiber Optic Resonators for Angular Rate Sensors

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Fiber-optic ring resonators can be used in various fields of science and technology as miniature sensors and sensors of physical quantities: an optoelectronic generator, a temperature and pressure sensor, biosensors, an angular rate sensor, etc. To determine the operating parameters of a measuring sensor, it is necessary to measure the resonant parameters with an acceptable accuracy. These parameters are free spectral range (FSR), width at half maximum (FWHM), finesse (F) and quality factor (Q-factor).We have fabricated and investigated resonators, each of which is a closed fiber cavity of two fused couplers. The authors managed to reduce the error caused by the nonlinearity by using a reference asymmetric Mach–Zehnder interferometer and applying the Hilbert transforms. Synchronous measurement of the resonant spectrum and the beat signal coming from the interferometer during tuning of the laser center frequency and subsequent signal processing in a mathematical package made it possible to reduce the relative measurement error of the resonator performance parameters from 15 to 0.5%. This technique makes it possible to measure not only operating parameters with good accuracy, but also to record the change in these parameters, which improves the accuracy of detectors and sensors based on optical resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Saleh, K., Merrer, P.H., Llopis, O., and Cibiel, G., 2012 IEEE International Frequency Control Symposium Proc., 2012, p. 1. https://doi.org/10.1109/FCS.2012.6243650

  2. Zhang, J. and Lit, J.W., J. Lightwave Technol., 1994, vol. 12, no. 4, p. 1256. https://doi.org/10.1109/50.301819

    Article  ADS  Google Scholar 

  3. Fuderer, L.A., Wang, L., Stuart, J.S., Hedges, M.P., Truscott, A.G., and Hodgman, S.S., Opt. Continuum, 2022, vol. 1, no. 2, p. 306. https://doi.org/10.1364/OPTCON.443612

    Article  Google Scholar 

  4. Li, Y., Pu, S., Zhao, Y., and Yao, T., Sensors, 2018, vol. 18, no. 12, p. 4358. https://doi.org/10.3390/s18124358

    Article  ADS  Google Scholar 

  5. Xie, W.G., Zhang, Y.N., Wang, P.Z., and Wang, J.Z., Sensors, 2018, vol. 18, no. 2, p. 505. https://doi.org/10.3390/s18020505

    Article  ADS  Google Scholar 

  6. Listvin, V. and Logozinsky, V., Electron.: Sci., Technol., Business, 2006, vol. 8, p. 72.

    Google Scholar 

  7. Kuai, X., Wei, L., Yang, F., Yan, W., Li, Z., and Wang, X., Sensors, 2022, vol. 22, no. 8, p. 2889. https://doi.org/10.3390/s22082889

    Article  ADS  Google Scholar 

  8. Liu, L., Liu, S., Hu, J., Ma, H., and Jin, Z., Opt. Express, 2022, vol. 30, no. 7, p. 12192. https://doi.org/10.1364/OE.458596

    Article  ADS  Google Scholar 

  9. Niu, J., Liu, W., Pan, Z., Tao, Y., Zhou, Y., Xing, E., and Liu, J., Opt. Commun., 2021, vol. 488, 126839. https://doi.org/10.1016/j.optcom.2021.126839

    Article  Google Scholar 

  10. Li, H., Ni, P., Wang, Q., Feng, C., and Feng, L., J. Lightwave Technol., 2020, vol. 39, no. 6, p. 1858. https://doi.org/10.1109/JLT.2020.3040173

    Article  ADS  Google Scholar 

  11. Venediktov, V., Filatov, Y.V., and Shalymov, E.V., Quantum Electron., 2016, vol. 46, no. 5, p. 437. https://doi.org/10.1070/QEL15932

    Article  ADS  Google Scholar 

  12. Gilev, D.G. and Krishtop, V.V., Proc. XXIX St. Petersburg ICINS, 2022, p. 269. https://doi.org/10.23919/ICINS51784.2022.9815442

  13. Gilev, D.G., Zhuravlev, A.A., Moskalev, D.N., Chuvyzgalov, A.A., and Krishtop, V.V., Opt. J., 2022, vol. 89, no. 4, p. 59. https://doi.org/10.17586/1023-5086-2022-89-04-59-69

    Article  Google Scholar 

  14. Fiber-Optic Ring Resonator Interferometer, Menéndez, R.J.P., Ed., IntechOpen, 2018.

    Google Scholar 

  15. Gilev, D.G., Valushina, P.M., Maksimenko, V.A., and Krishtop, V.V., Opt. Continuum., 2022, vol. 1, no. 3. https://doi.org/10.1364/OPTCON.450803

  16. Gilev, D.G., Valiushina, P.M., Maksimenko, V.A., and Krishtop, V.V., Proc. Int. Conf. on Laser Optics, 2022, p. 1. https://doi.org/10.1109/ICLO54117.2022.9840277

  17. Gilev, D.G. and Krishtop, V.V., Proc. XI Int. Conf. on Photonics and Information Optics: Collection of Scientific Papers, Moscow, 2022.

  18. Valiushina, P.M. and Gilev, D.G., Foton-Ekspress-Nauka, 2021, vol. 6, no. 174, p. 367.

  19. Llopis, O., Merrer, P.H., Bouchier, A., Saleh, K., and Cibiel, G., Proc. SPIE, 2010, vol. 7579, p. 235. https://doi.org/10.1117/12.847164

    Article  Google Scholar 

  20. Valyushin, P.M., Ovchinnikov, K.A., and Gilev, D.G., Appl. Photonics, 2021, vol. 8, no. 2, p. 19. https://doi.org/10.15593/2411-4367/2021.2.02

  21. Ahn, T.J. and Kim, D.Y., Appl. Opt., 2007, vol. 46, no. 13, p. 2394. https://doi.org/10.1364/AO.46.002394

    Article  ADS  Google Scholar 

Download references

Funding

This work was carried out as part of the State Support Program for leading companies developing and implementing products, services and platform solutions mainly based on technologies and solutions for the digital transformation of priority sectors of the economy and the social sphere (Agreement no. 2/549/2020 dated July 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Gilev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, D.G., Ovchinnikov, K.A., Krishtop, V.V. et al. Fiber Optic Resonators for Angular Rate Sensors. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S75–S80 (2022). https://doi.org/10.3103/S1062873822700423

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700423

Keywords:

Navigation