Skip to main content
Log in

1 MeV Electron Dynamics in the Outer Radiation Belt during Geomagnetic Storms on September 7–8, 2017

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A study is performed of two successive geomagnetic storms that developed under similar conditions but differed by the presence (in the first storm) and absence (in the second storm) of rapid weakening of the relativistic electron flux (dropout) during the main storm phase. It is concluded that the second storm dropout was compensated for by the acceleration of energetic electrons during powerful geomagnetic disturbances that accompanied the storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Borovsky, J.E. and Denton, M.H., J. Geophys. Res., 2009, vol. 114, A02201.

    ADS  Google Scholar 

  2. Yuan, C. and Zong, Q., J. Geophys. Res.: Space Phys., 2013, vol. 118, p. 7545.

    Article  ADS  Google Scholar 

  3. Gao, X., Li, W., Bortnik, J., et al., J. Geophys. Res.: Space Phys., 2015, vol. 120, p. 4324.

    Article  ADS  Google Scholar 

  4. Wu, H., Chen, T., Kalegaev, V.V., et al., J. Geophys. Res.: Space Phys., 2020, vol. 125, e2020JA028098.

  5. Kim, H.-J. and Chan, A.A., J. Geophys. Res., 1997, vol. 102, p. 22107.

    Article  ADS  Google Scholar 

  6. Thorne, R.M., Geophys. Rev. Lett., 2010, vol. 37, L22107.

  7. Turner, D.L. and Ukhorskiy, A.Y., in The Dynamic Loss of Earth’s Radiation Belts, Amsterdam: Elsevier, 2020, p. 1.

    Google Scholar 

  8. Scolini, C., Chané, E., Temmer, M., et al., Astrophys. J., Suppl. Ser., 2020, vol. 247, p. 21.

    Article  ADS  Google Scholar 

  9. Hajra, R., Tsurutani, B.T., Gurbax, S., and Lakhina, G.S., Astrophys. J., 2020, vol. 899, 3.

    Article  ADS  Google Scholar 

  10. Despirak, I.V., Kleimenova, N.G., Gromova, L.I., et al., Geomagn. Aeron., 2020, vol. 60, no. 3, p 292.

    Article  ADS  Google Scholar 

  11. Obana, Y., Maruyama, N., Shinbori, A., et al., Space Weather, 2019, vol. 17, p. 861.

    Article  ADS  Google Scholar 

  12. Redmon, R.J., Seaton, D.B., Steenburgh, R., et al., Space Weather, 2018, vol. 16, p. 1190.

    Article  ADS  Google Scholar 

  13. Clilverd, M.A., Rodger, C.J., Brundell, J.B., et al., Space Weather, 2018, vol. 16, p. 704.

    Article  ADS  Google Scholar 

  14. Jiggens, P., Clavie, C., Evans, H., et al., Space Weather, 2019, vol. 17, p. 99.

    Article  ADS  Google Scholar 

  15. Gjerloev, J.W., J. Geophys. Res., 2012, vol. 117, A09213.

    ADS  Google Scholar 

  16. Newell, P.T. and Gjerloev, J.W., J. Geophys. Res., 2012, vol. 117, A05215.

    ADS  Google Scholar 

  17. Newell, P.T. and Gjerloev, J.W., J. Geophys. Res., 2011, vol. 116, A12221.

    ADS  Google Scholar 

  18. Tsurutani, B.T., Hajra, R., Echer, E., and Gjerloev, J.W., Ann. Geophys., 2015, vol. 33, no. 5, p. 519.

    Article  ADS  Google Scholar 

  19. Mauk, B.H., Fox, N.J., Kanekal, S.G., et al., Space Sci. Rev., 2013, vol. 179, p. 3.

    Article  ADS  Google Scholar 

  20. Blake, J.B., Carranza, P.A., Claudepierre, S.G., et al., Space Sci. Rev., 2013, vol. 179, p. 383.

    Article  ADS  Google Scholar 

  21. Spence, H.E., Reeves, G.D., Baker, D.N., et al., Space Sci. Rev., 2013, vol. 179, p. 1.

    Article  Google Scholar 

  22. Kletzing, C.A., Kurth, W.S., Acuna, M., et al., Space Sci. Rev., 2013, vol. 179, p. 127.

    Article  ADS  Google Scholar 

  23. Olson, W.P. and Pfitzer, K.A., Magnetospheric Magnetic Field Modeling, Annual Scientific Report, AFOSR Contract no. F44620.

  24. Tsyganenko, N.A. and Sitnov, M.I., J. Geophys. Res., 2005, vol. 110, A03208.

    ADS  Google Scholar 

  25. Antonova, E.E., Stepanova, M.V., Moya, P.S., et al., Earth Planets Space, 2018, vol. 70, 127.

    Article  ADS  Google Scholar 

  26. Vlasova, N.A., Kalegaev, V.V., and Nazarkov, I.S., Geomagn. Aeron., 2021, vol. 61, no. 3, p. 331.

    Article  ADS  Google Scholar 

  27. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Geophys. Rev. Lett., 2003, vol. 30, p. 1529.

    Article  ADS  Google Scholar 

  28. Summers, D., Ni, B., and Meredith, N.P., J. Geophys. Res., 2007, vol. 112, A04207.

    ADS  Google Scholar 

  29. Thorne, R.M., Geophys. Rev. Lett., 2010, vol. 37.

    Google Scholar 

  30. Demekhov, A.G., Trakhtengerts, V.Y., Rycroft, M.J., and Nunn, D., Geomagn. Aeron., 2006, vol. 46, p. 711.

    Article  ADS  Google Scholar 

  31. Demekhov, A.G., Trakhtengerts, V.Y., Rycroft, M.J., and Nunn, D., Geomagn. Aeron., 2009, vol. 49, p. 24.

    Article  ADS  Google Scholar 

  32. Pilipenko, V.A., Kozyreva, O.V., Engebretson, M.J., and Soloviev, A.A., Russ. J. Earth Sci., 2017, vol. 17, ES1004.

    Article  Google Scholar 

  33. Yahnin, A.G., Yahnina, T.A., Semenova, N.V., et al., J. Geophys. Res.: Space Phys., 2016, vol. 121, p. 8286.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

SuperMAG geomagnetic indices were obtained from the website https://supermag.jhuapl.edu. We thank the participants of the SuperMAG project (https://supermag.jhuapl.edu/info/?page=acknowledgement) for the data used in calculating these indices. ULF index data are available at the website of the Russian Academy of Sciences’ Geophysical Center (http://ulf.gcras.ru/plot_ulf.html). NOAA POES and MetOp satellite data are available at the website https://www.ngdc.noaa.gov/stp/satellite/poes/dataaccess.html. Meteop-M1 satellite data are available at the website of Moscow State University’s Skobel’tsyn Research Institute of Nuclear Physics Center for Space Weather Analysis (http://swx.sinp.msu.ru). The Van Allen Probes satellite data used in this work were obtained at the websites https://emfisis.physics.uiowa.edu/data/index (EMFISIS) and https://www.RBSP-ect.lanl.gov (MagEIS). We thank the leaders and participants of satellite projects and website developers for free access to their data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Yahnin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahnin, A.G., Yahnina, T.A. 1 MeV Electron Dynamics in the Outer Radiation Belt during Geomagnetic Storms on September 7–8, 2017. Bull. Russ. Acad. Sci. Phys. 86, 275–280 (2022). https://doi.org/10.3103/S1062873822030273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822030273

Navigation