Skip to main content
Log in

Modeling Vibrational Populations of Metastable Molecular Nitrogen in Titan’s Atmosphere during the Precipitation of High-Energy Particles

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A study is performed of the kinetics of triplet states of molecular nitrogen at the altitudes of Titan’s upper and middle atmosphere during the precipitation of high-energy electrons and cosmic rays. Collisional molecular processes with atmospheric components are considered for the first time in order to calculate concentrations of metastable molecular nitrogen \({{{\text{N}}}_{2}}\left( {{{{\text{A}}}^{3}}\Sigma _{u}^{ + }} \right)\). Numerical calculations show that inelastic molecular collisions result in the predominant accumulation of electronic excitation energy of metastable nitrogen at lower vibrational level ν = 0 and the altitudes of the middle atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Campbell, L. and Brunger, M.J., Int. Rev. Phys. Chem., 2016, vol. 35, no. 2, p. 297.

    Article  Google Scholar 

  2. Lebonnois, S., Bakes, E.L.O., and McKay, C.P., Icarus, 2002, vol. 159, no. 2, p. 505.

    Article  ADS  Google Scholar 

  3. Wilson, E.H. and Atreya, S.K., J. Geophys. Res. Planets, 2004, vol. 109, no. 6, E06002.

    Article  ADS  Google Scholar 

  4. Krasnopolsky, V.A., Planet. Space Sci., 2012, vol. 73, p. 318.

    Article  ADS  Google Scholar 

  5. Vuitton, V., Dutuit, O., Smith, M., and Balucani, N., in Titan: Interior, Surface, Atmosphere and Space Environment, chap. 7, Cambridge: Cambridge Univ. Press, 2014, p. 224.

    Google Scholar 

  6. Szopa, C., Cernogora, G., Boufendi, L., et al., Planet. Space Sci., 2006, vol. 54, no. 4, p. 394.

    Article  ADS  Google Scholar 

  7. Torokova, L., Watson, J., Krcma, F., et al., Contrib. Plasma Phys., 2015, vol. 55, no. 6, p. 470.

    Article  ADS  Google Scholar 

  8. Pintassilgo, C.D. and Loureiro, J., Planet. Space Sci., 2009, vol. 57, no. 13, p. 1621.

    Article  ADS  Google Scholar 

  9. Pintassilgo, C.D. and Loureiro, J., Adv. Space Res., 2010, vol. 46, no. 5, p. 657.

    Article  ADS  Google Scholar 

  10. Jauberteau, J.L. and Jauberteau, I., J. Phys. D: Appl. Phys., 2018, vol. 51, no. 31, 315201.

    Article  Google Scholar 

  11. Kirillov, A.S., Werner, R., and Guineva, V., Chem. Phys. Lett., 2017, vol. 685, p. 95.

    Article  ADS  Google Scholar 

  12. Kirillov, A.S., Sol. Syst. Res., 2020, vol. 54, no. 1, p. 28.

    Article  ADS  Google Scholar 

  13. Sharipov, A.S., Loukhovitski, B.I., and Starik, A.M., J. Phys. Chem. A, 2016, vol. 120, no. 25, p. 4349.

    Article  Google Scholar 

  14. Umemoto, H., J. Chem. Phys., 2007, vol. 127, no. 1, 014304.

    Article  ADS  Google Scholar 

  15. Gilmore, F.R., Laher, R.R., and Espy, P.J., J. Phys. Chem. Ref. Data, 1992, vol. 21, no. 5, p. 1005.

    Article  ADS  Google Scholar 

  16. Kirillov, A.S., Ann. Geophys., 2008, vol. 26, no. 5, p. 1159.

    Article  ADS  Google Scholar 

  17. Kirillov, A.S., Chem. Phys. Lett., 2016, vol. 643, p. 131.

    Article  ADS  Google Scholar 

  18. Kirillov, A.S., Chem. Phys. Lett., 2019, vol. 715, p. 263.

    Article  ADS  Google Scholar 

  19. Thomas, J.M., Jeffries, J.B., and Kaufman, F., Chem. Phys. Lett., 1983, vol. 102, no. 1, p. 50.

    Article  ADS  Google Scholar 

  20. Golde, M.F., Ho, G.H., Tao, W., and Thomas, J.M., J. Phys. Chem., 1989, vol. 93, no. 3, p. 1112.

    Article  Google Scholar 

  21. Slanger, T.G., Wood, B.J., and Black, G., J. Photochem., 1973, vol. 2, no. 1, p. 63.

    Article  Google Scholar 

  22. Piper, L.G., J. Chem. Phys., 1992, vol. 97, no. 1, p. 270.

    Article  ADS  Google Scholar 

  23. Umemoto, H., Phys. Chem. Chem. Phys., 2003, vol. 5, no. 24, p. 5392.

    Article  Google Scholar 

  24. Bezard, B., Yelle, R.V., and Nixon, C.A., in Titan: Interior, Surface, Atmosphere and Space Environment, chap. 5, Cambridge: Cambridge Univ. Press, 2014, p. 158.

    Google Scholar 

  25. Vuitton, V., Yelle, R.V., Klippenstein, S.J., et al., Icarus, 2019, vol. 324, p. 120.

    Article  ADS  Google Scholar 

  26. Herron, J.T., J. Phys. Chem. Ref. Data, 1999, vol. 28, no. 5, p. 1453.

    Article  ADS  Google Scholar 

  27. Dreyer, J.W. and Perner, D., J. Chem. Phys., 1973, vol. 58, no. 3, p. 1195.

    Article  ADS  Google Scholar 

  28. Kirillov, A.S., J. Atmos. Sol.-Terr. Phys., 2012, vols. 81–82, p. 9.

    Article  ADS  Google Scholar 

  29. Landau, L.D., Sobranie trudov (Collection of Works), Moscow: Nauka, 1969, vol. 1.

  30. Schwartz, R.N., Slawsky, Z.I., and Herzfeld, K.F., J. Chem. Phys., 1952, vol. 20, no. 10, p. 1591.

    Article  ADS  Google Scholar 

  31. Nikitin, E.E., Teoriya elementarnykh atomno-molekulyarnykh protsessov v gazakh (Theory of Elementary Atomic and Molecular Processes in Gases), Moscow: Khimiya, 1970.

    Google Scholar 

  32. Nikitin, E.E. and Osipov, A.I., Itogi Nauki Tekh., Ser.: Kinet. Katal., vol. 4, Moscow: VINITI, 1977.

    Google Scholar 

  33. Nikitin, E.E., Osipov, A.I., and Umanskii, S.Ya., Khim. Plazmy, 1989, vol. 15, p. 3.

    Google Scholar 

  34. Kirillov, A.S., Kosm. Issled., 1997, vol. 35, no. 2, p. 155.

    Google Scholar 

  35. Kirillov, A.S., Ann. Geophys., 1998, vol. 16, no. 7, p. 838.

    ADS  Google Scholar 

  36. Millikan, R.C. and White, D.R., J. Chem. Phys., 1963, vol. 39, no. 12, p. 3209.

    Article  ADS  Google Scholar 

  37. Billing, G.D. and Fisher, E.R., Chem. Phys., 1979, vol. 43, no. 3, p. 395.

    Article  Google Scholar 

  38. Billing, G.D., Chem. Phys. Lett., 1980, vol. 76, no. 1, p. 178.

    Article  ADS  Google Scholar 

  39. Herman, R.C. and Shuler, K.E., J. Chem. Phys., 1953, vol. 21, no. 2, p. 373.

    Article  ADS  Google Scholar 

  40. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook of Atomic and Molecular Physics), Moscow: Atomizdat, 1980.

  41. Cravens, T.E., Robertson, I.P., Clark, J., et al., Geophys. Rev. Lett., 2005, vol. 32, no. 12, L12108.

  42. Agren, K., Wahlund, J.-E., Modolo, R., et al., Ann. Geophys., 2007, vol. 25, no. 11, p. 2359.

    Article  ADS  Google Scholar 

  43. Molina-Cuberos, G.J., López-Moreno, J.J., Rodrigo, R., et al., Planet. Space Sci., 1999, vol. 47, nos 10–11, p. 1347.

    Article  ADS  Google Scholar 

  44. Konovalov, V.P. and Son, E.E., Khim. Plazmy, 1987, vol. 14, p. 194.

    Google Scholar 

  45. Konovalov, V.P., Zh. Tekh. Fiz., 1993, vol. 63, no. 3, p. 23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kirillov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, A.S., Werner, R. & Guineva, V. Modeling Vibrational Populations of Metastable Molecular Nitrogen in Titan’s Atmosphere during the Precipitation of High-Energy Particles. Bull. Russ. Acad. Sci. Phys. 86, 335–342 (2022). https://doi.org/10.3103/S1062873822030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822030108

Navigation