Skip to main content
Log in

Synthesis of Magnetized Heavy Nuclei

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We study the properties and mass distributions of ultramagnetized nuclei produced as a result of heavy ion collisions, inside magnetar crust, explosions of type II supernovas, and the merging of neutron stars. For magnetic field strengths ranging from 0.1 to 10 TT, the Zeeman effect results in a linear nuclear magnetic response that can be described using magnetic susceptibility. Binding energies rise correspondingly for nuclei with open shells and fall for nuclei with closed shells. A noticeable increase in the generation of corresponding explosion nucleosynthetic products with antimagic numbers is predicted for nuclei belonging to the iron group and the r-process. The magnetic enhancement of 44Ti isotopes is consistent with results from observations and testifying to the substantial increase in the share of the main titanium isotope (48Ti) in the Galaxy’s chemical composition. An increased number of nuclides with low mass numbers is predicted in the peak of the r-process as a result of magnetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, New York: Pergamon, 1965, vol. 3.

    Google Scholar 

  2. Kondratyev, V.N., Eur. Phys. J. A, 2014, vol. 50, p. 7.

    Article  Google Scholar 

  3. Kondratyev, V.N., EPJ Web Conf., 2016, vol. 107, 10006.

  4. Kondratyev, V.N. and Korovina, Yu.V., JETP Lett., 2015, vol. 102, p. 131.

    Article  ADS  Google Scholar 

  5. Price, D.J. and Rosswog, S., Science, 2006, vol. 312, p. 719.

    Article  ADS  Google Scholar 

  6. Kondratyev, V.N., Phys. Rev. Lett., 2002, vol. 88, 221101.

    Article  ADS  Google Scholar 

  7. Voronyuk, V., Toneev, V.D., Cassing, W., et al., Phys. Rev. C: Nucl. Phys., 2011, vol. 83, 054911.

    Article  ADS  Google Scholar 

  8. Kondratyev, V.N. and Korovina, Yu.V., Phys. Part. Nucl., 2018, vol. 49, p. 105.

    Article  Google Scholar 

  9. Kondratyev, V.N., Phys. Part. Nucl., 2019, vol. 50, p. 613.

    Article  Google Scholar 

  10. Kondratyev, V.N., Phys. Lett. B, 2018, vol. 782, p. 167.

    Article  ADS  Google Scholar 

  11. Kondratyev, V.N., Mon. Not. R. Astron. Soc., 2018, vol. 480, p. 5380.

    Article  ADS  Google Scholar 

  12. Pian, E., D’Avanzo, P., and Vergani, D., Nature, 2017, vol. 551, p. 67.

    Article  ADS  Google Scholar 

  13. Thielemann, F.-K., Eichler, M., Panov, I.V., and Wehmeyer, B., Annu. Rev. Nucl. Part. Sci., 2017, vol. 67, p. 253.

    Article  ADS  Google Scholar 

  14. Kondratyev, V.N., Phys. Rev. C: Nucl. Phys., 2004, vol. 69, 038801.

    Article  ADS  Google Scholar 

  15. Kondratyev, V.N., Bonasera, A., and Iwamoto, A., Phys. Rev. C: Nucl. Phys., 2000, vol. 61, 044613.

    Article  ADS  Google Scholar 

  16. Bonasera, A. and Kondratyev, V.N., Phys. Lett. B, 1994, vol. 339, p. 207.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kondratyev.

Additional information

Translated by V. Vetrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, V.N. Synthesis of Magnetized Heavy Nuclei. Bull. Russ. Acad. Sci. Phys. 85, 517–520 (2021). https://doi.org/10.3103/S1062873821050129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821050129

Navigation