Skip to main content
Log in

3D Femtosecond Laser Submicron Lithography as a Way of Fabricating Spiral Phase Plates for Forming Photon Beams with Orbital Angular Momentum

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A spiral phase plate with a topological charge of 1 is fabricated via 3D femtosecond laser submicron lithography. An optical scheme based on a Michelson interferometer is developed and assembled to check the vortex properties of a generated laser beam. Optical measurements confirm that the spiral phase plate generates an optical laser vortex with a normalized orbital angular momentum of |m| = 1. A technology for fabricating and testing spiral phase plates that transmit the required orbital angular momentum to the laser field is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kevrekidis, P.G., Frantzeskakis, D.J., and Carretero-González, R., Emergent Nonlinear Phenomena in Bose–Einstein Condensates, Springer Series on Atomic, Optical, and Plasma Physics, Berlin: Springer, 2008.

  2. Cross, M.C. and Hohenberg, P.C., Rev. Mod. Phys., 1993, vol. 65, p. 851.

    Article  ADS  Google Scholar 

  3. Bramati, A. and Modugno, M., Physics of Quantum Fluids, Berlin: Springer, 2013.

    Book  Google Scholar 

  4. Andersen, M.F., Ryu, C., Clade, P., et al., Phys. Rev. Lett., 2006, vol. 97, 170406.

    Article  ADS  Google Scholar 

  5. Krizhanovskii, D.N., Whittaker, D.M., Bradley, R.A., et al., Phys. Rev. Lett., 2010, vol. 104, 126402.

    Article  ADS  Google Scholar 

  6. Rykov, M.A. and Skidanov, R.V., Appl. Opt., 2014, vol. 53, p. 156.

    Article  ADS  Google Scholar 

  7. Kovalev, A.A., Kotlyar, V.V., and Porfir’ev, A.P., Komp’yut. Opt., 2016, vol. 40, no. 3, p. 305.

    Article  ADS  Google Scholar 

  8. Zhu, R., Avsievich, T., Popov, A., and Meglinski, I., Cells, 2020, vol. 9, p. 545.

    Article  Google Scholar 

  9. Cai, X., Wang, J., Strain, M.J., et al., Science, 2012, vol. 338, p. 363.

    Article  ADS  Google Scholar 

  10. Li, H., Phillips, D.B., Wang, X., et al., Optica, 2015, vol. 2, p. 547.

    Article  ADS  Google Scholar 

  11. Miao, P., Zhang, Z., Sun, J., et al., Science, 2016, vol. 353, p. 464.

    Article  ADS  Google Scholar 

  12. Xie, Z., Lei, T., Li, F., et al., Light Sci. Appl., 2018, vol. 7, 18001.

    Article  ADS  Google Scholar 

  13. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., and Woerdman, J.P., Phys. Rev. A: At., Mol., Opt. Phys., 1992, vol. 45, 8185.

    Google Scholar 

  14. Knyazev, B.A. and Serbo, V.G., Phys.—Usp., 2018, vol. 61, p. 449.

    Article  ADS  Google Scholar 

  15. Beijersbergen, M., Allen, L., Van der Veen, H., and Woerdman, J., Opt. Commun., 1993, vol. 96, p. 123.

    Article  ADS  Google Scholar 

  16. Beijersbergen, M., Coerwinkel, R., Kristensen, M., and Woerdman, J., Opt. Commun., 1994, vol. 112, p. 321.

    Article  ADS  Google Scholar 

  17. Marrucci, L., Manzo, C., and Paparo, D., Phys. Rev. Lett., 2006, vol. 96, 163905.

    Article  ADS  Google Scholar 

  18. Padgett, M. and Allen, L., J. Opt., 2002, vol. 4, p. 17.

    Google Scholar 

  19. Saleh, B.E.A. and Teich, M.C., Fundamentals of Photonics, New York: Wiley, 2019.

    Google Scholar 

  20. Alekseev, A.N., Alekseev, K.N., Borodavka, O.S., et al., Tech. Phys. Lett., 1998, vol. 24, p. 694.

    Article  ADS  Google Scholar 

  21. Nagali, E. and Sciarrino, F., Manipulation of Photonic Orbital Angular Momentum for Quantum Information Processing, Rijeka: IntechOpen, 2012.

    Book  Google Scholar 

  22. Allen, L., Barnett, S.M., and Padgett, M.J., Optical Angular Momentum, Optics and Optoelectronics, Bristol, UK: Inst. Phys., 2003.

  23. Kotlyar, V.V. and Kovalev, A.A., Komp’yut. Opt., 2018, vol. 42, no. 2, p. 212.

    Article  ADS  Google Scholar 

  24. Witzgall, G., Vrijen, R., Yablonovitch, E., et al., Opt. Lett., 1998, vol. 23, p. 1745.

    Article  ADS  Google Scholar 

  25. Sueda, K., Miyaji, G., Miyanaga, N., and Nakatsuka, M., Opt. Express, 2004, vol. 12, no. 15, p. 3548.

    Article  ADS  Google Scholar 

  26. Kotlyar, V.V., Kovalev, A.A., and Porfir’ev, A.P., Komp’yut. Opt., 2020, vol. 44, no. 2, p. 145.

    Article  ADS  Google Scholar 

  27. Kotlyar, V.V., Kovalev, A.A., and Porfir’ev, A.P., Komp’yut. Opt., 2017, vol. 41, no. 3, p. 330.

    Article  ADS  Google Scholar 

  28. Kotlyar, V.V., Almazov, A.A., Khonina, S.N., et al., J. Opt. Soc. Am. A, 2005, vol. 22, no. 5, p. 849.

    Article  ADS  Google Scholar 

  29. Roumpos, G., Phase fluctuations in microcavity exciton polariton condensation, Doctoral Sci. Dissertation, Stanford: Stanford Univ., 2011.

  30. Fickler, R., Campbell, G., Buchler, B., et al., Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, 13642.

    Article  ADS  Google Scholar 

  31. Schneider, C., Rahimi-Iman, A., Kim, N.Y., et al., Nature, 2013, vol. 497, p. 348.

    Article  ADS  Google Scholar 

  32. Rahimi-Iman, A., Polariton Physics: From Dynamic Bose–Einstein Condensates in Strongly-Coupled Light-Matter Systems to Polariton Lasers, Springer Series in Optical Sciences, Springer, 2020.

  33. Flatten, L., He, Z., Coles, D., et al., Sci. Rep., 2016, vol. 6, 33134.

    Article  ADS  Google Scholar 

  34. Dusel, M., Berzold, S., Egorov, O.A., et al., Nat. Commun., 2020, vol. 11, 2863.

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed as a part of a State Task for the Russian Academy of Sciences’ Institute of Solid State Physics and Institute of Microelectronics Technology and High Purity Materials, project no. 075-00920-20-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Demenev.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demenev, A.A., Kovalchuk, A.V., Polushkin, E.A. et al. 3D Femtosecond Laser Submicron Lithography as a Way of Fabricating Spiral Phase Plates for Forming Photon Beams with Orbital Angular Momentum. Bull. Russ. Acad. Sci. Phys. 85, 159–164 (2021). https://doi.org/10.3103/S1062873821020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821020076

Navigation