Skip to main content
Log in

Studying the Effect of Brownian Motion on the Mössbauer Spectra of Nanoparticles in a Medium Simulating Cell Cytoplasm

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The nonstandard nature of intracellular motion is associated with a considerable content of macromolecules and is largely due to the phenomenon of abnormal diffusion. Features of the motion of nanoparticles in concentrated protein solutions that simulate cytoplasm are studied on a nanosecond time scale by means of Mössbauer spectroscopy. A comparative analysis is performed of the nano- and macro-viscosity of the media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Goins, A.B., Sanabria, H., and Waxham, M.N., Biophys. J., 2008, vol. 95, no. 11, p. 5362.

    Article  ADS  Google Scholar 

  2. Einstein, A., Ann. Phys. (N. Y., NY, U. S.), 1905, vol. 17, p. 549.

    ADS  Google Scholar 

  3. Smoluchowski, M., Ann. Phys. (N. Y., NY, U. S.), 1906, vol. 21, p. 756.

    Google Scholar 

  4. Hofling, F. and Franosch, T., Rep. Prog. Phys., 2013, vol. 76, 046602.

    Article  ADS  Google Scholar 

  5. Dix, J.A. and Verkman, A.S., Ann. Rev. Biophys., 2008, vol. 37, p. 247.

    Article  Google Scholar 

  6. Ellis, R.J. and Minton, A.P., Nature, 2003, vol. 425, no. 6953, p. 27.

    Article  ADS  Google Scholar 

  7. Di Rienzo, C., Piazza, V., Gratton, E., et al., Nat. Commun., 2014, vol. 5, no. 1, p. 1.

    Article  Google Scholar 

  8. Elcock, A.H., Curr. Opin. Struct. Biol., 2010, vol. 20, no. 2, p. 196.

    Article  Google Scholar 

  9. Minton, A.P., J. Cell Sci., 2006, vol. 119, no. 14, p. 2863.

    Article  Google Scholar 

  10. Qin, S. and Zhou, H.X., Biophys. J., 2009, vol. 97, no. 1, p. 12.

    Article  ADS  Google Scholar 

  11. Roosen-Runge, F., Hennig, M., Zhang, F., et al., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 29, 11815.

    Article  ADS  Google Scholar 

  12. Novak, I.L., Kraikivski, P., Slepchenko, B.M., et al., Biophys. J., 2009, vol. 97, no. 3, p. 758.

    Article  ADS  Google Scholar 

  13. Rivas, G. and Minton, A.P., Trends Biochem. Sci., 2016, vol. 41, no. 11, p. 970.

    Article  Google Scholar 

  14. Rashid, R., Chee, S.M., Raghunath, M., and Wohland, T., Phys. Biol., 2015, vol. 12, no. 3, 034001.

    Article  ADS  Google Scholar 

  15. Weiss, M., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, vol. 88, no. 1, 010101.

    Article  ADS  Google Scholar 

  16. Ernst, D., Hellmann, M., Köhler, J., and Weiss, M., Soft Matter, 2012, vol. 8, no. 18, p. 4886.

    Article  ADS  Google Scholar 

  17. Guigas, G., Kalla, C., and Weiss, M., Biophys. J., 2007, vol. 93, no. 1, p. 316.

    Article  ADS  Google Scholar 

  18. Norregaard, K., Metzler, R., Ritter, C.M., et al., Chem. Rev., 2017, vol. 117, no. 5, p. 4342.

    Article  Google Scholar 

  19. Chuev, M.A., Cherepanov, V.M., and Polikarpov, M.A., JETP Lett., 2018, vol. 108, no. 1, p. 59.

    Article  ADS  Google Scholar 

  20. Gabbasov, R., Yurenya, A., Nikitin, A., et al., J. Magn. Magn. Mater., 2019, vol. 475, p. 146.

    Article  ADS  Google Scholar 

  21. Landers, J., Salamon, S., Remmer, H., et al., Nano Lett., 2016, vol. 16, no. 2, p. 1150.

    Article  ADS  Google Scholar 

  22. Keller, H. and Kundig, W., Solid State Commun., 1975, vol. 16, no. 2, p. 253.

    Article  ADS  Google Scholar 

  23. Cherepanov, V.M., Gabbasov, R.R., Yurenya, A.Yu., et al., Crystallogr. Rep., 2020, vol. 65, no. 3, p. 398.

    Article  ADS  Google Scholar 

  24. Kuimova, M.K., Yahioglu, G., Levitt, J.A., et al., J. Am. Chem. Soc., 2008, vol. 130, no. 21, p. 6672.

    Article  Google Scholar 

  25. Garanina, A.S., Naumenko, V.A., Nikitin, A.A., et al., Nanomedicine, 2020, vol. 25, 102171.

    Article  Google Scholar 

  26. Priev, A., Almagor, A., Yedgar, S., et al., Biochemistry, 1996, vol. 35, no. 7, p. 2061.

    Article  Google Scholar 

  27. Chuev, M.A., J. Magn. Magn. Mater., 2019, vol. 470, p. 12.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research as part of comprehensive scientific project no. 17-00-00444 (K). The samples were prepared as part of subproject no. 17-00-00442. The Mössbauer studies were performed as part of subproject no. 17-00-00438. Our mathematical analysis was performed as part of subproject no. 17-00-00443, and a State Task for the Valiev Institute of Physics and Technology from the RF Ministry of Science and Hihger Education, topic no. 0066-2019-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Yurenya.

Additional information

Translated by P. Kuchina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurenya, A.Y., Nikitin, A.A., Gabbasov, R.R. et al. Studying the Effect of Brownian Motion on the Mössbauer Spectra of Nanoparticles in a Medium Simulating Cell Cytoplasm. Bull. Russ. Acad. Sci. Phys. 84, 1399–1402 (2020). https://doi.org/10.3103/S1062873820110295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820110295

Navigation