Skip to main content
Log in

Theoretical Analysis of Experimental Data on the Angular Anisotropy of Fragments of Nuclear Fission Induced by Neutrons at Energies of up to 200 MeV

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Problems of describing experimental data on the angular distributions of fragments of nuclear fission induced by intermediate-energy neutrons are discussed. A way of calculating angular distributions based on using the TALYS program is proposed. The capabilities of the technique for obtaining new information on the fission process and reactions at intermediate energies are shown by the example of describing data obtained for the \({}^{{237}}{\text{Np}}\) nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Vandenbosch, R. and Huizenga, J.R., Nuclear Fission, New York: Academic, 1973.

    Google Scholar 

  2. Ryzhov, I.V., Onegin, M.S., Tutin, G.A., et al., Nucl. Phys. A, 2005, vol. 760, p. 19.

    Article  ADS  Google Scholar 

  3. Vorobyev, A.S., Gagarski, A.M., Shcherbakov, O.A., Vaishnene, L.A., and Barabanov, A.L., JETP Lett., 2015, vol. 102, p. 203.

    Article  ADS  Google Scholar 

  4. Vorobyev, A.S., Gagarski, A.M., Shcherbakov, O.A., Vaishnene, L.A., and Barabanov, A.L., JETP Lett., 2016, vol. 104, p. 365.

    Article  ADS  Google Scholar 

  5. Vorobyev, A.S., Gagarski, A.M., Shcherbakov, O.A., et al., EPJ Web Conf., 2017, vol. 146, 04011.

  6. Vorobyev, A.S., Gagarski, A.M., Shcherbakov, O.A., Vaishnene, L.A., and Barabanov, A.L., JETP Lett., 2018, vol. 107, p. 521.

    Article  ADS  Google Scholar 

  7. Vorobyev, A.S., Gagarski, A.M., Shcherbakov, O.A., Vaishnene, L.A., and Barabanov, A.L., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, p. 1240.

    Article  Google Scholar 

  8. Vorobyev, A.S., Gagarski, A.M., Shcherbakov, O.A., Vaishnene, L.A., and Barabanov, A.L., JETP Lett., 2019, vol. 110, p. 242.

    Article  ADS  Google Scholar 

  9. Tarrio, D., Leong, L.S., Audouin, L., et al., Nucl. Data Sheets, 2014, vol. 119, p. 35.

    Article  ADS  Google Scholar 

  10. Leal-Cidoncha, E., Duran, I., Paradela, C., et al., EPJ Web Conf., 2016, vol. 111, 10002.

  11. Geppert-Kleinrath, V., Tovesson, F., Barrett, J.S., et al., Phys. Rev. C, 2019, vol. 99, 064619.

    Article  ADS  Google Scholar 

  12. Blum, K., Density Matrix Theory and Applications, Berlin: Springer, 2012.

    Book  MATH  Google Scholar 

  13. Barabanov, A.L. and Grechukhin, D.P., Sov. J. Nucl. Phys., 1986, vol. 43, p. 892.

    Google Scholar 

  14. Capote, R., Herman, M., Oblozinsky, P., et al., Nucl. Data Sheets, 2009, vol. 110, p. 3107.

    Article  ADS  Google Scholar 

  15. Koning, A.J., Hilaire, S., and Duijvestijn, M.C., Proc. Int. Conf. on Nuclear Data for Science and Technology, Nice, 2007, Les Ulis: EDP Sci., 2008, p. 211.

  16. Cox, J.A.M. and Tolhoek, H.A., Physica, 1953, vol. 19, p. 673.

    Article  ADS  Google Scholar 

  17. Shcherbakov, O., Donets, A., Evdokimov, A., et al., J. Nucl. Sci. Technol., 2002, vol. 39, no. 2 (suppl.), p. 230.

    Article  Google Scholar 

  18. Paradela, C., Tassan-Got, L., Audouin, L., et al., Phys. Rev. C: Nucl. Phys., 2010, vol. 82, 034601.

    Article  ADS  Google Scholar 

  19. Diakaki, M., Karadimos, D., Vlastou, R., et al., Phys. Rev. C, 2016, vol. 93, 034614.

    Article  ADS  Google Scholar 

  20. Brolley, J.E. and Dickinson, W.C., Phys. Rev., 1954, vol. 94, p. 640.

    Article  ADS  Google Scholar 

  21. Simmons, J.E. and Henkel, R.L., Phys. Rev., 1960, vol. 120, p. 198.

    Article  ADS  Google Scholar 

  22. Leachman, R.B. and Blumberg, L., Phys. Rev., 1965, vol. 130, p. B814.

    Article  Google Scholar 

  23. Shpak, D.L., Fursov, B.I., and Smirenkin, G.N., Sov. J. Nucl. Phys., 1971, vol. 12, p. 19.

    Google Scholar 

  24. Iyer, R.H. and Sagu, M.L., Proc. Nuclear Physics and Solid State Physics Symp., Madurai, 1970, vol. 2, p. 57.

  25. Androsenko, Kh.D., Korolev, G.G., and Shpak, D.L., Vopr. At. Nauki Tekh.,Ser.: Yad. Konstanty, 1982, vol. 46, no. 2, p. 9.

    Google Scholar 

  26. Ouichaoui, S., Juhász, S., Várnagy, M., and Csikai, J., Acta Phys. Hung., 1988, vol. 64, p. 209.

    Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-02-00571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Barabanov.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabanov, A.L., Vorobyev, A.S., Gagarski, A.M. et al. Theoretical Analysis of Experimental Data on the Angular Anisotropy of Fragments of Nuclear Fission Induced by Neutrons at Energies of up to 200 MeV. Bull. Russ. Acad. Sci. Phys. 84, 397–402 (2020). https://doi.org/10.3103/S1062873820040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820040036

Navigation