Skip to main content
Log in

Planar THz FELs Based on Intense Parallel Sheet Electron Beams and Intracavity Wave Scattering

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A design for a planar FEL operating in the terahertz frequency range at the multimegawatt power level is being jointly developed at the ELMI accelerator by the Budker Institute of Nuclear Physics and the Institute of Applied Physics. The FEL oscillator is driven by parallel intense sheet electron beams of moderately relativistic energy, and transitions to the above frequency range via a two-stage cascade scheme. The first beam generates a powerful millimeter pump wave, which then travels through special waveguides to the parallel channel and is scattered by the second beam into a wave of terahertz radiation. Various possible arrangements of the FEL scheme are discussed, and results from their simulation are presented. The results from cold tests of the FEL’s electrodynamic system are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ginzburg, N.S., Peskov, N.Yu., and Sergeev, A.S., Pis’ma Zh. Tekh. Fiz., 1992, vol. 18, no. 9, p. 23.

    Google Scholar 

  2. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, vol. 358, p. 189.

    Google Scholar 

  3. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., et al., Phys. Rev. E, 1999, vol. 60, no. 1, p. 935.

    Article  ADS  Google Scholar 

  4. Arzhannikov, A.V., Ginzburg, N.S., Zaslavskii, V.Yu., Ivanenko, V.G., Ivanov, I.A., Kalinin, P.V., Kuznetsov, A.S., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitskii, S.L., and Stepanov, V.D., JETP Lett., 2008, vol. 87, no. 11, p. 618.

    Article  ADS  Google Scholar 

  5. Arzhannikov, A.V., Ginzburg, N.S., Kalinin, P.V., et al., Phys. Rev. Lett., 2016, vol. 117, p. 114 t801.

    Article  Google Scholar 

  6. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Arzhannikov, A.V., and Sinitskii, S.L., Tech. Phys. Lett., 2001, vol. 27, no. 3, p. 240.

    Article  ADS  Google Scholar 

  7. Arzhannikov, A.V., Astrelin, V.T., Bobylev, V.B., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 507, p. 129.

    Google Scholar 

  8. Arzhannikov, A.V., Ginzburg, N.S., Zaslavskii, V.Yu., et al., Vestn. Novosib. Gos. Univ. Ser.: Fiz., 2012, vol. 7, no. 1, p. 5.

    Google Scholar 

  9. Arzhannikov, A.V., Ginzburg, N.S., Denisov, G.G., Kalinin, P.V., Peskov, N.Yu., Sergeev, A.S., and Sinitskii, S.L., Tech. Phys. Lett., 2014, vol. 40, no. 9, p. 730.

    Article  ADS  Google Scholar 

  10. Pantell, R.H., Soncini, G., and Puthoff, H.E., IEEE J. Quantum Electron., 1968, vol. QE-4, no. 11, p. 905.

    Article  ADS  Google Scholar 

  11. McDermott, D.B., Marshall, T.C., Schlesinger, S.E., et al., Phys. Rev. Lett., 1978, vol. 41, no. 5, p. 1368.

    Article  ADS  Google Scholar 

  12. Bratman, V.L., Ginzburg, N.S., and Petelin, M.I., JETP Lett., 1978, vol. 28, no. 4, p. 190.

    ADS  Google Scholar 

  13. Gover, A. and Sprangle, P., IEEE J. Quantum Electron., 1981, vol. QE-17, no. 8, p. 1196.

    Article  ADS  Google Scholar 

  14. Zhukov, P.G., Ivanov, V.S., Rabinovich, M.S., Raizer, M.D., and Rukhadze, A.A., J. Exp. Theor. Phys., 1979, vol. 49, no. 6, p. 1045.

    ADS  Google Scholar 

  15. Carmel, J., Granatstein, V.L., and Gover, A., Phys. Rev. Lett., 1983, vol. 51, no. 7, p. 566.

    Article  ADS  Google Scholar 

  16. Bratman, V.L., Denisov, G.G., Ginzburg, N.S., et al., Int. J. Electron., 1985, vol. 59, no. 3, p. 247.

    Article  Google Scholar 

  17. Peskov, N.Yu., Kaminsky, A.K., Kalynov, Yu.K., et al., Digest of Joint 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics (Cardiff, 2007), Piscataway: IEEE, 2007, vol. 2, p. 837.

  18. Ginzburg, N.S., Malkin, A.M., Peskov, N.Yu., et al., Appl. Phys. Lett., 2009, vol. 95, p. 043504.

    Article  ADS  Google Scholar 

  19. Ginzburg, N.S., Zaslavskii, V.Yu., Zotova, I.V., Malkin, A.M., Peskov, N.Yu., and Sergeev, A.S., JETP Lett., 2010, vol. 91, p. 266.

    ADS  Google Scholar 

  20. Arzhannikov, A.V., Astrelin, V.T., Kalinin, P.V., et al., Vestn. Novosib. Gos. Univ. Ser.: Fiz., 2007, vol. 2, no. 4, p. 125.

    Google Scholar 

  21. http://www.inp.nsk.su/nauka/issledovatelskaya-infrastruktura/nauchnye-ustanovki/novosibirskij-lse.

Download references

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for Basic Research, project no. 16-08-00811. Some of the work was done using the Novo-FEL infrastructure of the Siberian Synchrotron and Terahertz Radiation Center (Budker Institute of Nuclear Physics). It was supported by the RF Ministry of Education and Science, unique project identifier RFMEFI62117X0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Peskov.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhannikov, A.V., Ginzburg, N.S., Zaslavsky, V.Y. et al. Planar THz FELs Based on Intense Parallel Sheet Electron Beams and Intracavity Wave Scattering. Bull. Russ. Acad. Sci. Phys. 83, 140–145 (2019). https://doi.org/10.3103/S1062873819020035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873819020035

Navigation