Skip to main content
Log in

Fourier Optics of Fractal Structures

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The scaling characteristics of Fourier spectra of fractal structures are determined. Their stability and influence on cognitive processes associated in particular with the aesthetic aspects of perceiving objects with self-similarity criteria are estimated. Evidence of their heuristic importance for Fourier analysis results is presented using an example in which the properties of aperiodic multilayer structures and chaotic processes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, 1968.

    Google Scholar 

  2. Arzamastseva, G.V., Evtikhov, M.G., Lisovskii, F.V., and Mansvetova, E.G., Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 10, p. 1370.

    Article  Google Scholar 

  3. Zotov, A.M., Korolenko, P.V., and Mishin, A.Yu., Crystallogr. Rep., 2010, vol. 55, no. 6, p. 964.

    Article  ADS  Google Scholar 

  4. Albuquerque, E.L. and Cottam, M.G., Phys. Rep., 2003, vol. 376, p. 225.

    Article  ADS  Google Scholar 

  5. Fesenko, V.I., Waves Random Complex Media, 2014, vol. 24, no. 2, p. 174.

    Article  ADS  Google Scholar 

  6. Peitgen, H.-O., Jürgens, H., and Saupe, D., Chaos and Fractals, New York: Springer, 2004, 2nd ed.

    Book  MATH  Google Scholar 

  7. Kashtanov, A.A., Korolenko, P.V., and Mishin, A.Yu., Health Educ. Millennium, 2017, vol. 19, no. 2, p. 90.

    Google Scholar 

  8. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: W.H. Freeman and Company, 1982.

    MATH  Google Scholar 

  9. Potapov, A.A., Radioelectron. Nanosyst. Inf. Technol., 2009, vol. 1, nos. 1–2, p. 64.

    Google Scholar 

  10. Korolenko, P.V., Maganova, M.S., and Mesnyankin, A.V., Novatsionnye metody analiza stokhasticheskikh protsessov i struktur v optike. Fraktal’nye i mul’tifraktal’nye metody, veivlet-preobrazovaniya. Uchebnoe posobie (Innovative Methods for Analysis of Stochastic Processes and Structures in Optics. Fractal and Multifractal Methods and Wavelet Transforms. Study Guide), Moscow: Mosk. Gos. Univ., 2004.

    Google Scholar 

  11. Pavlov, A.N. and Anishchenko, V.S., Izv. Sarat. Univ., Ser. Fiz., 2007, vol. 7, no. 1, p. 3.

    Google Scholar 

  12. Bergé, P., Pomeau, Y., and Vidal, C., Order within Chaos: Towards a Deterministic Approach to Turbulence, Wiley, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Averchenko.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averchenko, A.V., Konopaltseva, N.Y., Korolenko, P.V. et al. Fourier Optics of Fractal Structures. Bull. Russ. Acad. Sci. Phys. 82, 1383–1387 (2018). https://doi.org/10.3103/S1062873818110035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818110035

Navigation