Skip to main content
Log in

Effect of Magnetite Nanoparticle Morphology on the Parameters of MRI Relaxivity

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Results are presented from synthesizing and characterizing magnetite nanoparticles with spherical, cubic and octahedral geometry. Magnetic properties (saturation magnetization, residual magnetization, and coercive force), cytotoxicity, and T2 relaxivity are measured for the synthesized nanoparticles. They are characterized via X-ray diffraction and dynamic light scattering (hydrodynamic size and zeta potential). The effect the shape of the nanoparticles have on the values of T2 relaxivity is analyzed. Nontoxic magnetite nanoparticles coated with copolymer are excellent contrast agents for magnetic resonance imaging (MRI) and show better contrast properties than their commercial analogs (Rezovist, Ferumoxytol, Feridex).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laurent, S., et al., MRI Contrast Agents. From Molecules to Particles, Springer, 2017.

    Book  Google Scholar 

  2. Wan, F., et al., Inorg. Nano-Met. Chem., 2017, vol. 47, no. 2, p. 288.

    Article  Google Scholar 

  3. Ying, L., et al., Sci. China: Life Sci., 2017, vol. 60, no. 1, p. 11.

    Article  Google Scholar 

  4. Prybylski, J.P., Semelka, R.C., and Jay, M., Magn. Reson. Imaging, 2017, vol. 38, p. 145.

    Article  Google Scholar 

  5. Beg, M.S., et al., J. Magn. Magn. Mater., 2017, vol. 428, p. 340.

    Article  ADS  Google Scholar 

  6. Groman, E.V., et al., US Patent 9555133, 2017.

    Google Scholar 

  7. Crisi, G., et al., J. Magn. Reson. Imaging, 2017, vol. 45, no. 2, p. 500.

    Article  Google Scholar 

  8. Liu, Q., et al., Biomaterials, 2017, vol. 114, p. 23.

    Article  Google Scholar 

  9. Chen, T., et al., Magn. Reson. Med. Sci., 2017, vol. 16, no. 4, p. 275.

    Article  Google Scholar 

  10. Zhang, C.J., et al., STEM Fellowship J., 2017, vol. 3, no. 1, p. 47.

    Article  Google Scholar 

  11. Kevadiya, B., et al., JAIDS, J. Acquired Immune Defic. Syndr., 2017, vol. 74, p. 91.

    Article  Google Scholar 

  12. Dönmez Güngüneş, C., et al., Drug Chem. Toxicol., 2017, vol. 40, no. 2, p. 215.

    Article  Google Scholar 

  13. Hai, H.T., et al., J. Colloid Interface Sci., 2010, vol. 346, no. 1, p. 37.

    Article  ADS  Google Scholar 

  14. Zhou, Z., et al., Chem. Mater., 2015, vol. 27, no. 9, p. 3505.

    Article  Google Scholar 

  15. Laurent, S., et al., Chem. Rev., 2008, vol. 108, no. 6, p. 2064.

    Article  Google Scholar 

  16. Simon, T., et al., J. Nanopart. Res., 2013, vol. 15, no. 4, p. 1578.

    Article  ADS  Google Scholar 

  17. Gonzales, M. and Krishnan, K.M., J. Magn. Magn. Mater., 2007, vol. 311, no. 1, p. 59.

    Article  ADS  Google Scholar 

  18. Jain, T.K., et al., Mol. Pharmaceutics, 2005, vol. 2, no. 3, p. 194.

    Article  Google Scholar 

  19. Park, J., et al., Nat. Mater., 2004, vol. 3, no. 12, p. 891.

    Article  ADS  Google Scholar 

  20. Petcharoen, K. and Sirivat, A., Mater. Sci. Eng. B, 2012, vol. 177, no. 5, p. 421.

    Article  Google Scholar 

  21. Wang, J., et al., J. Cryst. Growth, 2004, vol. 263, no. 1, p. 616.

    Article  ADS  MathSciNet  Google Scholar 

  22. Mizukoshi, Y., Shuto, T., Masahashi, N., et al., Ultrason. Sonochem., 2009, vol. 16, p. 525.

    Article  Google Scholar 

  23. Zhen, G., et al., J. Phys. Chem. C, 2010, vol. 115, no. 2, p. 327.

    Article  Google Scholar 

  24. Guivar, J.A.R., et al., Adv. Nanopart., 2014, vol. 3, p. 114.

    Article  Google Scholar 

  25. Barbeta, V.B., et al., J. Appl. Phys., 2010, vol. 107, no. 7, p. 073913.

    Article  ADS  Google Scholar 

  26. Özdemir, Ö. and Dunlop, D.J., Earth Planet. Sci. Lett., 1999, vol. 165, p. 229.

    Article  ADS  Google Scholar 

  27. Hu, C., Gao, Z., and Yang, X., F, Chem. Phys. Lett., 2006, vol. 429, nos. 4–6, p. 513.

  28. Bonvin, D., et al., Nanomaterials, 2017, vol. 7, no. 8, p. 202.

    Article  Google Scholar 

  29. Liu, H.L., et al., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 34, p. 15205.

    Article  ADS  Google Scholar 

  30. Jain, T.K., et al., Biomaterials, 2008, vol. 29, no. 29, p. 4012.

    Article  Google Scholar 

  31. Thu, M.S., et al., Nat. Med., 2012, vol. 18, no. 3, p. 463.

    Article  Google Scholar 

  32. Gillis, P. and Koenig, S.H., Magn. Reson. Med., 1987, vol. 5, no. 4, p. 323.

    Article  Google Scholar 

  33. Eberbeck, D., et al., IEEE Trans. Magn., 2013, vol. 49, no. 1, p. 269.

    Article  ADS  Google Scholar 

  34. Li, W., et al., J. Magn. Reson. Imaging, 2005, vol. 21, no. 1, p. 46.

    Article  MathSciNet  Google Scholar 

  35. Yancy, A.D., et al., J. Magn. Reson. Imaging, 2005, vol. 21, no. 4, p. 432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Nguyen.

Additional information

Original Russian Text © T.L. Nguyen, T.R. Nizamov, M.A. Abakumov, I.V. Shchetinin, A.G. Savchenko, A.G. Majouga, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2018, Vol. 82, No. 9, pp. 1335–1342.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.L., Nizamov, T.R., Abakumov, M.A. et al. Effect of Magnetite Nanoparticle Morphology on the Parameters of MRI Relaxivity. Bull. Russ. Acad. Sci. Phys. 82, 1214–1221 (2018). https://doi.org/10.3103/S1062873818090150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818090150

Navigation