Skip to main content
Log in

Theoretical study of divalent samarium defects in lanthanum fluoride crystals

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The results from a theoretical study of the electron structure of an impurity rare-earth Sm2+ defect in a LaF3 crystal are presented. The electron energy levels of the rare-earth impurity defect and the transitions between them are studied using the multiconfigurational CASSCF/CASPT2 method. The absorption spectrum obtained during the calculations is consistent with the experimental data. Based on our model, we can state definitively that a vacancy on an anion sublattice serves as a charge compensator for a divalent ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rast, H.E., Fry, J.L., and Caspers, H.H., J. Chem. Phys., 1967, vol. 46, no. 4, p. 1460.

    Article  ADS  Google Scholar 

  2. Neogy, D. and Purohit, T., Phys. Status Solidi (b), 1987, vol. 139, no. 2, p. 519.

    Article  ADS  Google Scholar 

  3. Carnall, W.T., et al., J. Chem. Phys., 1989, vol. 90, no. 7, p. 3443.

    Article  ADS  Google Scholar 

  4. Weller, P.F. and Kucza, J.A., J. Appl. Phys., 1964, vol. 35, no. 6, p. 1945.

    Article  ADS  Google Scholar 

  5. Dieke, G.H., et al., Spectra and Energy Levels of Rare Earth Ions in Crystals, New York: Interscience, 1968.

    Google Scholar 

  6. Radzhabov, E.A. and Kozlovsky, V.A., Phys. Procedia, 2015, vol. 76, p. 47.

    Article  ADS  Google Scholar 

  7. Mysovsky, A.S., et al., Phys. Rev. B, 2011, vol. 84, no. 6, p. 064133.

    Article  ADS  Google Scholar 

  8. Popov, N., et al., Radiat. Meas., 2016, vol. 90, p. 55.

    Article  Google Scholar 

  9. Pantazis, D.A. and Neese, F., J. Chem. Theory Comput., 2009, vol. 5, no. 9, p. 2229.

    Article  Google Scholar 

  10. Neto, A.C. and Jorge, F.E., Chem. Phys. Lett., 2013, vol. 582, p. 158.

    Article  ADS  Google Scholar 

  11. Neto, A.C., et al., J. Mol. Struct.: THEOCHEM, 2005, vol. 718, no. 1, p. 219.

    Article  Google Scholar 

  12. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 270.

    Article  ADS  Google Scholar 

  13. http://classic.chem.msu.su/gran/firefly/index.html.

  14. Kohn, W. and Sham, L.J., Phys. Rev., 1965, vol. 140, no. 4A, p. A1133.

    Article  ADS  Google Scholar 

  15. Perdew, J.P. and Zunger, A., Phys. Rev. B, 1981, vol. 23, no. 10, p. 5048.

    Article  ADS  Google Scholar 

  16. Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 1996, vol. 6, no. 1, p. 15.

    Article  Google Scholar 

  17. Roos, B.O., et al., Chem. Phys., 1980, vol. 48, no. 2, p. 157.

    Article  ADS  MathSciNet  Google Scholar 

  18. Karlstrom, G., et al., Comput. Mater. Sci., 2003, vol. 28, no. 2, p. 222.

    Article  Google Scholar 

  19. Finley, J., et al., Chem. Phys. Lett., 1998, vol. 288, no. 2, p. 299.

    Article  ADS  Google Scholar 

  20. Malmqvist, P., Roos, B.O., and Schimmelpfennig, B., Chem. Phys. Lett., 2002, vol. 357, no. 3, p. 230.

    Article  ADS  Google Scholar 

  21. Roos, B.O., et al., J. Phys. Chem. A, 2008, vol. 112, no. 45, p. 11431.

    Article  Google Scholar 

  22. Roos, B.O., et al., J. Phys. Chem. A, 2004, vol. 108, no. 15, p. 2851.

    Article  Google Scholar 

  23. Sadoc, A., Broer, R., and de Graaf, C., J. Chem. Phys., 2007, vol. 126, no. 13, p. 134709.

    Article  ADS  Google Scholar 

  24. Lopez-Moraza, S., Pascual, J.L., and Barandiaran, Z., J. Chem. Phys., 1995, vol. 103, no. 6, p. 2117.

    Article  ADS  Google Scholar 

  25. http://hpc.icc.ru.

  26. http://clu.nusc.ru.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Popov.

Additional information

Original Russian Text © N.V. Popov, A.S. Mysovsky, N.G. Chuklina, E.A. Radzhabov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 9, pp. 1269–1273.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, N.V., Mysovsky, A.S., Chuklina, N.G. et al. Theoretical study of divalent samarium defects in lanthanum fluoride crystals. Bull. Russ. Acad. Sci. Phys. 81, 1141–1145 (2017). https://doi.org/10.3103/S1062873817090192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873817090192

Navigation