Skip to main content
Log in

Calculating vertical atmospheric muon energy spectra for energies ranging from 102 to 105 GeV

  • Proceedings of the 34th National Conference on Cosmic Rays
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

New calculations of the atmospheric vertical muon energy spectra for energies ranging from 102 to 105 GeV are performed using an original approach and the CORSIKA 7.4 software package. The intensity of the atmospheric muon flux calculated using the SIBYLL 2.1 and QGSJET II-03 models for muon energies of ~(103–105) GeV is 1.7 times lower than the intensity predicted by L3+Cosmic, MARO and LVD collaborations on the basis of experimental data. For the energy range of ~(102–103) GeV, this reduction is as high as ~2.2 for the QGSJET II-03 model; for the SIBYLL 2.1 model, it falls to 2.1. If we assume that the first generation of charged π± and K ± mesons makes the greatest contribution to the most energetic muon flux, the generation of mesons is underestimated by 1.7 times in the abovementioned models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalmykov, N.N. and Ostapchenko, S.S., Phys. At. Nucl., 1993, vol. 56, p. 346.

    Google Scholar 

  2. Ostapchenko, S.S., Phys. Rev. D, 2006, vol. 74, p. 014026.

    Article  ADS  Google Scholar 

  3. Ostapchenko, S.S., Phys. Rev. D, 2011, vol. 83, p. 014018.

    Article  ADS  Google Scholar 

  4. Ahn, E.-J., Engel, R., Gaisser, T., et al., Phys. Rev. D, 2009, vol. 80, p. 094003.

    Article  ADS  Google Scholar 

  5. Werner, K., Liu, F.M., and Pierog, T., Phys. Rev. C, 2006, vol. 74, p. 044902.

    Article  ADS  Google Scholar 

  6. Pierog, T. and Werner, K., Nucl. Phys. B. (Proc. Suppl.), 2009, vol. 196, p. 102.

    Article  ADS  Google Scholar 

  7. Pierog, T., J. Phys.: Conf. Ser., 2013, vol. 409, p. 012008.

    Google Scholar 

  8. Gaisser, T.K., Cosmic Rays and Particle Physics, Cambridge Univ. Press, 1990, p. 279.

    Google Scholar 

  9. Lagutin, A.A., Tyumentsev, A.G., and Yushkov, A.V., J. Phys. G, 2004, vol. 30, p. 573.

    Article  ADS  Google Scholar 

  10. Klimushkin, S.I., Bugaev, E.U., and Sokolski, I.A., Phys. Rev. D, 2001, vol. 64, p. 014016.

    Article  ADS  Google Scholar 

  11. Lipari, P. and Stanev, T., Phys. Rev. D, 1991, vol. 44, p. 3543.

    Article  ADS  Google Scholar 

  12. Antonioni, P., Ghetti, C., Korolkova, E.V., et al., Astropart. Phys., 1997, vol. 7, p. 357.

    Article  ADS  Google Scholar 

  13. Battistoni, G., Ferrari, A., Muraro, S., and Sala, P.R., Nucl. Phys. B. (Proc. Suppl.), 2007, vol. 168, p. 286.

    Article  ADS  Google Scholar 

  14. Zatsepin, G.T. and Kuz’min, V.A., Zh. Eksp. Teor. Fiz., 1960, vol. 39, no. 6, p. 1677.

    Google Scholar 

  15. Butkevich, A.V., Dedenko, L.G., and Zheleznykh, I.M., Sov. J. Nucl. Phys., 1989, vol. 50, p. 90.

    Google Scholar 

  16. Volkova, L.V., Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 4, p. 560.

    Article  Google Scholar 

  17. Kochanov, A.A., Sinegovskaya, T.S., and Sinegovsky, S.I., Astropart. Phys., 2008, vol. 30, p. 219.

    Article  ADS  Google Scholar 

  18. Heck, D., Knapp, J., Capdevielle, J.N., et al., CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Karlsruhe: Forschungszentrum Karlsruhe, 1998.

    Google Scholar 

  19. Dedenko, L.G., Roganova, T.M., and Fedorova, G.F., JETP Lett., 2014, vol. 100, p. 223.

    Article  ADS  Google Scholar 

  20. Dedenko, L.G., Roganova, T.M., and Fedorova, G.F., Phys. At. Nucl., 2015, vol. 78, p. 840.

    Article  Google Scholar 

  21. Dedenko, L.G., Lukyashin, A.V., Fedorova, G.F., and Roganova, T.M., EPJ Web Conf., 2015, vol. 99, p. 10003.

    Article  Google Scholar 

  22. Gaisser, T.K. and Honda, M., Annu. Rev. Nucl. Part. Sci., 2002, vol. 52, p. 153199.

    Article  Google Scholar 

  23. Choutko, V. (AMS Collab.), Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, 2013, p. 1262. http://www.cbpf.br/~icrc2013/papers/icrc2013-1262.pdf.

    Google Scholar 

  24. Panov, A.D., Adams, J.H., Jr., Ahn, H.S., Batkov, K.E., Bashindzhagyan, G.L., Watts, J.W., Wefel, J.P., Wu, J., Ganel, O., Guzik, T.G., Gunashingha, R.M., Zatsepin, V.I., Isbert, J., Kim, K.C., Christl, M., et al., Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 4, p. 494

    Article  Google Scholar 

  25. Panov, A.D., Adams, J.H., Jr., Ahn, H.S., Bashinzhagyan, G.L., Watts, J.W., Wefel, J.P., Wu, J., Ganel, O., Guzik, T.G., Zatsepin, V.I., Isbert, I., Kim, K.C., Christl, M., Kouznetsov, E.N., Panasyuk, M.I., et al., Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 5, p. 564.

    Article  Google Scholar 

  26. Ahn, H.S. (CREAM Collab.), Astrophys. J. Lett., 2010, vol. 714, p. L89.

    Article  ADS  Google Scholar 

  27. Zhang, S.S. (WFCTA Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 629, p. 57.

    Article  ADS  Google Scholar 

  28. Bartoli, B. (ARGO_YBJ Collab.), Phys. Rev. D, 2012, vol. 85, p. 092005.

    Article  ADS  Google Scholar 

  29. Derbina, V.A., Galkin, V.I., and Hareyama, M. (RUNJOB Collab.), Astrophys. J. Lett., 2005, vol. 628, p. L41.

    Article  ADS  Google Scholar 

  30. Antoni, T. (KASCADE Collab.), Astropart. Phys., 2005, vol. 24, p. 1.

    Article  ADS  Google Scholar 

  31. Prosin, V.V. (TUNKA Collab.), Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, 2013, p. 0617. http://www.cbpf.br/~icrc2013/papers/icrc2013-0617.pdf.

    Google Scholar 

  32. Antonov, R.A., Aulova, T.V., Beschapov, S.P., Roganova, T.M., et al., Proc. 33rd Int. Cosmic Ray Conf., Rio de Janeiro, 2013, p. 1185. http://www.cbpf.br/~icrc2013/papers/icrc2013-1185.pdf.

    Google Scholar 

  33. Menjo, H., Adriani, O., Bongi, M., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, vol. 692, p. 224.

    Article  ADS  Google Scholar 

  34. Latino, G. (TOTEM Collab.), EPJ Web Conf., 2013, vol. 49, p. 02005.

    Article  Google Scholar 

  35. Achard, P., et al. (L3 Collab.), Phys. Lett. B, 2004, vol. 598, p. 15.

    Article  Google Scholar 

  36. Ambrosio, M., Antolini, R., Auriemma, G., et al. (MACRO Collab.), Phys. Rev. D, 1995, vol. 52, p. 3793.

    Article  ADS  Google Scholar 

  37. Aglietta, M., Alpat, B., Alieva, E.D., et al. (LVD Collab.), Phys. Rev. D, 1998, vol. 58, p. 092005.

    Article  ADS  Google Scholar 

  38. Dedenko, L.G., Fedorova, G.F., Roganova, T., et al., J. Phys. G, 2012, vol. 39, p. 095202.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Dedenko.

Additional information

Original Russian Text © L.G. Dedenko, A.V. Lukyashin, T.M. Roganova, G.F. Fedorova, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 4, pp. 534–537.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedenko, L.G., Lukyashin, A.V., Roganova, T.M. et al. Calculating vertical atmospheric muon energy spectra for energies ranging from 102 to 105 GeV. Bull. Russ. Acad. Sci. Phys. 81, 496–499 (2017). https://doi.org/10.3103/S106287381704013X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381704013X

Navigation