Skip to main content
Log in

On the nature of differences in the Ni charge states in barium and strontium titanates

  • Proceedings of the VIII (XIII) International Seminar on the Physics of Ferroelastics
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

XAFS studies of nickel-doped solid solution Ba1–x Sr x TiO3 show that the Ni charge state changes from 4 in SrTiO3 to ~2.5 in BaTiO3 as x is varied. First-principles electronic structure calculations show that nickel creates an impurity band in the forbidden gap of BaTiO3 and SrTiO3. Calculations of the formation energy of the oxygen vacancies explain the difference between the Ni charge states in these compounds by the different formation energies of these vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchino, K., Ferroelectric Devices, CRC Press, Taylor and Francis, 2009.

    Book  Google Scholar 

  2. Pithan, C., Hennings, D., and Waser, R., Int. J. Appl. Ceram. Technol., 2005, vol. 2, no. 1, p. 1.

    Article  Google Scholar 

  3. Porter, S.G., Ferroelectrics, 1981, vol. 33, no. 1, p. 193.

    Article  Google Scholar 

  4. Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., Venkatesh, J., and Setter, N., J. Electroceram., 2003, vol. 11, nos. 1–2, p. 5.

    Article  Google Scholar 

  5. Scott, J.F., Ann. Rev. Mater. Sci., 1998, vol. 28, p. 79.

    Article  ADS  Google Scholar 

  6. Glaister, R.M. and Kay, H.F., Proc. Phys. Soc., 1960, vol. 76, no. 5, p. 763.

    Article  ADS  Google Scholar 

  7. Müller, K.A. and Burkard, H., Phys. Rev. B, 1979, vol. 19, no. 7, p. 3593.

    Article  ADS  Google Scholar 

  8. Lemanov, V.V., Smirnova, E.P., Syrnikov, P.P., and Tarakanov, E.A., Phys. Rev. B, 1996, vol. 54, no. 5, p. 3151.

    Article  ADS  Google Scholar 

  9. Blasse, G., de Korte, P.H.M., and Mackor, A., J. Inorg. Nucl. Chem., 1981, vol. 43, no. 7, p. 1499.

    Article  Google Scholar 

  10. Gou, G.Y., Bennett, J.W., Takenaka, H., and Rappe, A.M., Phys. Rev. B, 2011, vol. 83, no. 20, p. 205115.

    Article  ADS  Google Scholar 

  11. Lebedev, A.I., Sluchinskaya, I.A., Erko, A., and Kozlovskii, V.F., JETP Lett., 2009, vol. 89, no. 9, p. 457.

    Article  ADS  Google Scholar 

  12. Sluchinskaya, I.A., Lebedev, A.I., and Erko, A., J. Adv. Dielectr., 2013, vol. 3, no. 4, p. 1350031.

    Article  Google Scholar 

  13. Sluchinskaya, I.A., Lebedev, A.I., and Erko, A., Phys. Solid State, 2014, vol. 56, no. 3, p. 449.

    Article  ADS  Google Scholar 

  14. Huang, Y.C. and Tuan, W.H., Mater. Chem. Phys., 2007, vol. 105, nos. 2–3, p. 320.

    Article  Google Scholar 

  15. Boujelben, F., Bahri, F., Boudaya, C., et al., J. Alloys Compd., 2009, vol. 481, nos. 1–2, p. 559.

    Article  Google Scholar 

  16. Das, S.K., Mishra, R.N., and Roul, B.K., Solid State Commun., 2014, vol. 191, p. 19.

    Article  ADS  Google Scholar 

  17. Böttcher, R., Langhammer, H.T., and Müller, T., J. Phys.: Condens. Matter, 2011, vol. 23, no. 11, p. 115903.

    ADS  Google Scholar 

  18. Duverger, E., Jannot, B., Maglione, M., and Jannin, M., Solid State Ionics, 1994, vol. 73, nos. 1–2, p. 139.

    Article  Google Scholar 

  19. Huang, Y.C. and Tuan, W.H., J. Electroceram., 2007, vol. 18, no. 3, p. 183.

    Article  Google Scholar 

  20. Huang, J.Q., Du, P.Y., Weng, W.J., and Han, G.R., J. Electroceram., 2008, vol. 21, no. 1, p. 394.

    Article  Google Scholar 

  21. Kumar, Y., Mohiddo., Md. A., Srivastava, A., and Yadav, K.L., Indian J. Eng. Mater. Sci., 2009, vol. 16, no. 6, p. 390.

    Google Scholar 

  22. Koo., Th.W., Lenjer, S., and Schirmer, O.F., J. Phys.: Condens. Matter, 2007, vol. 19, no. 49, p. 496214.

    Google Scholar 

  23. Lenjer, S., Scharfschwerdt, R., Koo., Th.W., and Schirmer, O.F., Solid State Commun., 2000, vol. 116, no. 3, p. 133.

    Article  ADS  Google Scholar 

  24. IFEFFIT. http://cars9.uchicago.edu/ifeffit/.

  25. Garrity, K.F., Bennett, J.W., Rabe, K.M., and Vanderbilt, D., Comput. Mater. Sci., 2014, vol. 81, p. 446.

    Article  Google Scholar 

  26. Anisimov, V.I., Aryasetiawan, F., and Lichtenstein, A.I., J. Phys.: Condens. Matter, 1997, vol. 9, no. 4, p. 767.

    ADS  Google Scholar 

  27. Postnikov, A.V., Poteryaev, A.I., and Borstel, G., Ferroelectrics, 1998, vol. 206, no. 1, p. 69.

    Article  Google Scholar 

  28. Evarestov, R.A., Kotomin, E.A., and Zhukovskii, Yu.F., Int. J. Quantum Chem., 2006, vol. 106, no. 10, p. 2173.

    Article  ADS  Google Scholar 

  29. Choi, M., Oba, F., and Tanaka, I., J. Appl. Phys., 2011, vol. 98, no. 17, p. 172901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Lebedev.

Additional information

Original Russian Text © A.I. Lebedev, I.A. Sluchinskaya, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2016, Vol. 80, No. 9, pp. 1167–1172.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.I., Sluchinskaya, I.A. On the nature of differences in the Ni charge states in barium and strontium titanates. Bull. Russ. Acad. Sci. Phys. 80, 1068–1073 (2016). https://doi.org/10.3103/S1062873816090288

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816090288

Navigation