Skip to main content
Log in

Standard leptons and the next lepton in the byuon theory

  • Proceedings of the LXV International Conference “Nucleus 2015: New Horizons in Nuclear Physics, Nuclear Engineering, Femto- and Nanotechnologies” (LXV International Conference on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A physical picture of the origin of lepton mass is presented on the basis of the byuon theory (BT). The BT is the theory of the life of special unobservable discrete objects: byuons, from which the world surrounding us are formed (physical space; fundamental constants h, e, c; the mass of elementary particles; the four fundamental interactions; the predicted new force in nature, and so on). A key difference between this theory and current models of the classical and quantum field theories is that the potentials of physical fields acquire precise fixable, measurable values. The definition of byuon contains a new fundamental vector constant: the cosmological vector potential (A g ≈ 1.95 × 1011 G cm). The BT contains only three constants: \(\tilde x_0 \) ≈ 2.78 × 10–33 cm, τ0 ≈ 0.927 × 10–43 s, and a modulus of A g that allows us to obtain the masses of all known leptons and predict the mass of the next lepton (80.4 GeV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okun’, L.B., Leptony i kvarki (Leptons and Quarks), Moscow: Nauka, 1990.

    Google Scholar 

  2. CERN experiments observe particle consistent with long-sought Higgs boson. http://press.cern/pressreleases/2012/07/cern-experiments-observe-particleconsistent-long-sought-higgs-boson

  3. Baurov, Yu.A., Struktura fizicheskogo prostranstva i novyi sposob polucheniya energii (teoriya, eksperiment, prikladnye voprosy) (Physical Space Structure and a New Way for Producing Energy (Theory, Experiment, Applied Problems)), Moscow: Krechet, 1998.

    Google Scholar 

  4. Baurov, Yu.A., Global Anisotropy of Physical Space. Experimental and Theoretical Basis, New York: Nova Sci., 2004.

    Google Scholar 

  5. Baurov, Yu.A. and Malov, I.F., J. Mod. Phys., 2010, vol. 1, p. 17.

    Article  Google Scholar 

  6. Baurov, Yu.A., Babaev, Yu.N., and Ablekov, V.K., Dokl. Akad. Nauk SSSR, 1981, vol. 259, p. 1080.

    Google Scholar 

  7. Baurov, Yu.A., Klimenko, E.Yu., and Novikov, S.I., Dokl. Akad. Nauk SSSR, 1990, vol. 315, p. 1116.

    ADS  Google Scholar 

  8. Baurov, Yu.A., Phys. Lett. A, 1993, vol. 181, p. 283.

    Article  ADS  Google Scholar 

  9. Baurov, Yu.A. and Shutov, V.L., Prikl. Fiz., 1995, no. 1, p. 40.

    Google Scholar 

  10. Baurov, Yu.A., et al., Mod. Phys. Lett. A, 2001, vol. 16, p. 2089.

    Article  ADS  Google Scholar 

  11. Baurov, Yu.A., Sobolev, Yu.G., Ryabov, Yu.W., and Kushniruk, W.F., Phys. At. Nucl., 2007, vol. 70, p. 1825.

    Article  Google Scholar 

  12. Baurov,Yu.A., et al., arXiv:1304.6885 [nucl-ex], 2013.

  13. Baurov, Yu.A., et al., Phys. Lett. A, 2003, vol. 311, p. 512.

    Article  ADS  Google Scholar 

  14. Baurov, Yu.A., Farafonov, V.G., and Znak, A.G., Advances in Plasma Physics Research, New York: Nova Sci., 2007, vol. 5.

  15. Baurov, Yu.A. and Malov, I.F., Int. J. Pure Appl. Phys., 2010, vol. 6, p. 469.

    Google Scholar 

  16. Malov, I.F. and Baurov, Yu.A., Astron. Rep., 2007, vol. 51, p. 830.

    Article  ADS  Google Scholar 

  17. Baurov, Yu.A., Sobolev, Yu.G., and Meneguzzo, F., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, p. 935.

    Article  Google Scholar 

  18. Baurov, Yu.A., Int. Lett. Chem. Phys. Astron., 2014, vol. 1, p. 41.

    Google Scholar 

  19. Stoeffl, W. and Decman, D.J., Phys. Rev. Lett., 1995, vol. 75, p. 3237.

    Article  ADS  Google Scholar 

  20. Dell’Oro, S., Marcocci, S., and Vissani, F., Phys. Rev. D, 2014, vol. 90, p. 033005.

    Article  ADS  Google Scholar 

  21. Denisov, E.P. and Shchukin, A.A., Phys. Part. Nucl. Lett., 2014, vol. 11, no. 1, p. 19.

    Article  Google Scholar 

  22. The Tevatron Electroweak Working Group for the CDF and D0 Collab., arXiv: 1204.0042v2 [hep-ex], 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Baurov.

Additional information

Original Russian Text © Yu.A. Baurov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 5, pp. 655–658.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baurov, Y.A. Standard leptons and the next lepton in the byuon theory. Bull. Russ. Acad. Sci. Phys. 80, 594–597 (2016). https://doi.org/10.3103/S1062873816030059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816030059

Navigation