Skip to main content
Log in

X-ray diffraction study of the nanostructural dynamics of fibrillar systems of hair tissue

  • Proceedings of the 20th National Conference on the Use of Synchrotron Radiation “SR-2014” and the National Youth Conference “Using Synchrotron Radiation”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A comprehensive review of experimental diffraction and spectral studies of hair tissue is presented. The limits of these analyses’ applicability in studying normal and transformed tissues are outlined. The effect of different endogenous and exogenous factors on the molecular and nanostructural ordering of human hair are studied by means of X-ray fluorescence and diffraction using synchrotron radiation. The diffraction pattern of hair is attributed to two fibrillar systems of tissue: the intermediate keratin filaments of its cytoskeleton and the proteoglycan fibrils of its extracellular matrix. The effect of personal hygiene products and medicines widely used for hair care on the structural transformation and elemental composition of hair tissue is investigated. Proteoglycans are considered as universal components of a matrix that ensure the structural homeostasis of biological tissue subjected to endogenous and exogenous effects. Hair tissue is a promising biological material for solving applied problems when used as a diagnostic material for the wide-scale monitoring of environmental and public health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astbury, W.T. and Street, A., Philos. Trans. Roy. Soc. London A, 1932, vol. 230, pp. 75–101.

    Article  ADS  Google Scholar 

  2. James, V., Kearsley, J., Irving, T., et al., Nature, 1999, vol. 398, pp. 33–34.

    Article  ADS  Google Scholar 

  3. Hart, M., Synchrotron Rad. News, 1999, vol. 12, no. 5, p. 31.

    Article  Google Scholar 

  4. Amenitsch, H., Rappolt, M., Laggner, P., et al., Synchrotron Rad. News, 1999, vol. 12, no. 5, pp. 32–34.

    Article  Google Scholar 

  5. Briki, F., Busson, B., Salicru, B., et al., Nature, 1999, vol. 400, p. 226.

    Article  ADS  Google Scholar 

  6. Stephenson, J., JAMA, 1999, vol. 281, no. 17, pp. 1–3.

    Article  Google Scholar 

  7. Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Biofizika, 1975, vol. 20, no. 5, pp. 801–806.

    Google Scholar 

  8. Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Apparat. Metody Rentgen. Anal., 1977, no. 19, pp. 73–81.

    Google Scholar 

  9. Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Preprint of Biophysics Institute USSR Acad. Sci., Pushchino, 1978.

    Google Scholar 

  10. Korneev, V.N., Shlektarev, V.A., Aul’chenko, V.M., et al., Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 2, pp. 197–200.

    Google Scholar 

  11. Vazina, A.A., Bras, W., Dolbnya, I.P., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, pp. 153–157.

    Article  ADS  Google Scholar 

  12. Aksirov, A.M., Gerasimov, V.S., Kondratyev, V.I., et al., Nucl. Instrum. Methods. Phys. Res. A, 2001, vol. 470, pp. 380–382.

    Article  ADS  Google Scholar 

  13. Korneev, V.N., Shlektarev, V.A., Zabelin, A.V., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2012, no. 10, pp. 71–87.

    Google Scholar 

  14. James, V.J., Cancer Detect. Prevent., 2006, vol. 30, pp. 233–238.

    Article  Google Scholar 

  15. Vazina, A.A., Gerasimov, V.S., Gorbunova, N.P., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 405, pp. 454–458.

    Article  ADS  Google Scholar 

  16. Drakopoulos, M., Sergienko, P.M., Snigireva, I., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, pp. 161–165.

    Article  ADS  Google Scholar 

  17. Trounova, V.A., Vazina, A.A., Lanina, N.F., et al., X-Ray Spectr., 2002, vol. 31, pp. 314–318.

    Article  Google Scholar 

  18. Vazina, A.A., Lanina, N.F., Korneev, V.N., et al., J. Glass Phys. Chem., 2007, vol. 33, no. 3, pp. 294–301.

    Article  Google Scholar 

  19. Vazina, A.A., Denisova, E.A., Zheleznaya, L.A., and Lazarev, P.I., Dokl. Akad. Nauk SSSR, 1985, vol. 281, no. 4, pp. 975–978.

    Google Scholar 

  20. Denisova, E.A., Lazarev, P.I., Vazina, A.A., and Zhelesnaya, L.A., Stud. Biophys., 1985, vol. 108, no. 2, pp. 117–121.

    Google Scholar 

  21. Zheleznaya, L.A., Denisova, E.A., Lazarev, P.I., and Vazina, A.A., J. Nanobiol., 1992, vol. 1, pp. 107–115.

    Google Scholar 

  22. Vazina, A.A., Lanina, N.F., Vasilieva, A.A., et al., Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 603, pp. 90–94.

    Article  ADS  Google Scholar 

  23. Vazina, A.A., Budantsev, A.Yu., Bras, W., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, pp. 297–301.

    Article  ADS  Google Scholar 

  24. Vazina, A.A., Vasilieva, A.A., Lanina, N.F., et al., Bull. Russ. Acad. Sci. Phys., 2013, vol. 77, no. 2, p. 146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vazina.

Additional information

Original Russian Text © A.A. Vazina, A.A. Vasilieva, N.F. Lanina, A.V. Zabelin, V.N. Korneev, G.N. Kulipanov, 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 1, pp. 84–91.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazina, A.A., Vasilieva, A.A., Lanina, N.F. et al. X-ray diffraction study of the nanostructural dynamics of fibrillar systems of hair tissue. Bull. Russ. Acad. Sci. Phys. 79, 75–80 (2015). https://doi.org/10.3103/S1062873815010360

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815010360

Keywords

Navigation